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1 What’s new

• 2011-04-11 - 2012-04-01: Development of stable version v2.2
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2 Introduction

2.1 What is GETM?

2.2 A short history of GETM

The idea for GETM was born in May 1997 in Arcachon, France during a workshop of the PhaSE
project which was sponsored by the European Community in the framework of the MAST-III
programme. It was planned to set up an idealised numerical model for the Eastern Scheldt,
The Netherlands for simulating the effect of vertical mixing of nutrients on filter feeder growth
rates. A discussion between the first author of this report, Peter Herman (NIOO, Yerseke, The
Netherlands) and Walter Eifler (JRC Ispra, Italy) had the result that the associated processes
were inherently three-dimensional (in space), and thus, only a three-dimensional model could give
satisfying answers. Now the question arose, which numerical model to use. An old wadden sea
model by Burchard (1995) including a two-equation turbulence model was written in z-coordinates
with fixed geopotential layers (which could be added or removed for rising and sinking sea surface
elevation, respectively) had proven to be too noisy for the applications in mind. Furthermore, the
step-like bottom approximation typical for such models did not seem to be sufficient. Other Public
Domain models did not allow for drying and flooding of inter-tidal flats, such as the Princeton
Ocean Model (POM). There was thus the need for a new model. Most of the ingredients were
however already there. The first author of this report had already written a k-ε turbulence model,
see Burchard and Baumert (1995), the forerunner of GOTM. A two-dimensional code for general
vertical coordinates had been written as well, see Burchard and Petersen (1997). And the first
author of this report had already learned a lot about mode splitting models from Jean-Marie
Beckers (University of Liege, Belgium). Back from Arcachon in Ispra, Italy at the Joint Research
Centre of the European Community, the model was basically written during six weeks, after which
an idealised tidal simulation for the Sylt-Rømø Bight in the wadden sea area between Germany
and Denmark could be successfully simulated, see Burchard (1998). By that time this model had
the little attractive name MUDFLAT which at least well accounted for the models ability to dry
and flood inter-tidal flats. At the end of the PhaSE project in 1999, the idealised simulation of
mussel growth in the Eastern Scheldt could be finished (not yet published, pers. comm. Francois
Lamy and Peter Herman).

In May 1998 the second author of this report joined the development of MUDFLAT. He first
fully rewrote the model from a one-file FORTRAN77 code to a modular FORTRAN90/95 code,
made the interface to GOTM (such that the original k-ε model was not used any more), integrated
the netCDF-library into the model, and prepared the parallelisation of the model. And a new
name was created, GETM, General Estuarine Transport Model. As already in GOTM, the word
”General” does not imply that the model is general, but indicates the motivation to make it more
and more general.

At that time, GETM has actually been applied for simulating currents inside the Mururoa atoll
in the Pacific Ocean, see Mathieu et al. (2002).

During the year 2001, GETM was then extended by the authors of this report to be a fully
baroclinic model with transport of active and passive tracers, calculation of density, internal pres-
sure gradient and stratification, surface heat and momentum fluxes and so forth. During a stay of
the first author at the Université Catholique de Louvain, Institut d’Astronomie et de Géophysique
George Lemâıtre, Belgium (we are grateful to Eric Deleersnijder for this invitation and many
discussions) the high-order advection schemes have been written. During another invitation to
Belgium, this time to the GHER at the Université de Liège, the first author had the opportunity
to discuss numerical details of GETM with Jean-Marie Beckers, who originally motivated us to use
the mode splitting technique.
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The typical challenging application in mind of the authors was always a simulation of the
tidal Elbe, where baroclinicity and drying and flooding of inter-tidal flats play an important role.
Furthermore, the tidal Elbe is long, narrow and bended, such that the use of Cartesian coordinates
would require an indexing of the horizontal fields, see e.g. Duwe (1988). Thus, the use of curvi-
linear coordinates which follow the course of the river has already been considered for a long
time. However, the extensions just listed above, give the model also the ability to simulate shelf
sea processes in fully baroclinic mode, such that the name General Estuarine Transport Model is
already a bit too restrictive.
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3 The physical equations behind GETM

3.1 Hydrodynamic equations

3.1.1 Three-dimensional momentum equations

For geophysical coastal sea and ocean dynamics, usually the three-dimensional hydrostatic equa-
tions of motion with the Boussinesq approximation and the eddy viscosity assumption are used
(Bryan (1969), Cox (1984), Blumberg and Mellor (1987), Haidvogel and Beckmann (1999), Kan-
tha and Clayson (2000b)). In the flux form, the dynamic equations of motion for the horizontal
velocity components can be written in Cartesian coordinates as:

∂tu+ ∂z(uw)− ∂z ((νt + ν)∂zu)

+α

(

∂x(u
2) + ∂y(uv)− ∂x

(
2AM

h ∂xu
)
− ∂y

(
AM

h (∂yu+ ∂xv)
)

−fv −
∫ ζ

z

∂xb dz
′

)

= −g∂xζ,

(1)

∂tv + ∂z(vw)− ∂z ((νt + ν)∂zv)

+α

(

∂x(vu) + ∂y(v
2)− ∂y

(
2AM

h ∂yv
)
− ∂x

(
AM

h (∂yu+ ∂xv)
)

+fu−
∫ ζ

z

∂yb dz
′

)

= −g∂yζ.

(2)

The vertical velocity is calculated by means of the incompressibility condition:

∂xu+ ∂yv + ∂zw = 0. (3)

Here, u, v and w are the ensemble averaged velocity components with respect to the x, y and z
direction, respectively. The vertical coordinate z ranges from the bottom −H(x, y) to the surface
ζ(t, x, y) with t denoting time. νt is the vertical eddy viscosity, ν the kinematic viscosity, f the
Coriolis parameter, and g is the gravitational acceleration. The horizontal mixing is parameterised
by terms containing the horizontal eddy viscosity AM

h , see Blumberg and Mellor (1987). The
buoyancy b is defined as

b = −g
ρ− ρ0
ρ0

(4)

with the density ρ and a reference density ρ0. The last term on the left hand sides of equations
(1) and (2) are the internal (due to density gradients) and the terms on the right hand sides are
the external (due to surface slopes) pressure gradients. In the latter, the deviation of surface
density from reference density is neglected (see Burchard and Petersen (1997)). The derivation of
equations (1) - (3) has been shown in numerous publications, see e.g. Pedlosky (1987), Haidvogel
and Beckmann (1999), Burchard (2002b).

In hydrostatic 3D models, the vertical velocity is calculated by means of equation (3) velocity
equation. Due to this, mass conservation and free surface elevation can easily be obtained.

Drying and flooding of mud-flats is already incorporated in the physical equations by multiply-
ing some terms with the non-dimensional number α which equals unity in regions where a critical
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water depth Dcrit is exceeded and approaches zero when the water depth D tends to a minimum
value Dmin:

α = min

{

1,
D −Dmin

Dcrit −Dmin

}

. (5)

Thus, α = 1 for D ≥ Dcrit, such that the usual momentum equation results except for very
shallow water, where simplified physics are considered with a balance between tendency, friction
and external pressure gradient. In a typical wadden sea application, Dcrit is of the order of 0.1 m
and Dmin of the order of 0.02 m (see Burchard (1998), Burchard et al. (2004)).

3.1.2 Kinematic boundary conditions and surface elevation equation

At the surface and at the bottom, kinematic boundary conditions result from the requirement that
the particles at the boundaries are moving along these boundaries:

w = ∂tζ + u∂xζ + v∂yζ for z = ζ, (6)

w = −u∂xH − v∂yH for z = −H. (7)

3.1.3 Dynamic boundary conditions

At the bottom boundaries, no-slip conditions are prescribed for the horizontal velocity components:

u = 0, v = 0. (8)

With (7), also w = 0 holds at the bottom. It should be noted already here, that the bottom
boundary condition (8) is generally not directly used in numerical ocean models, since the near-
bottom values of the horizontal velocity components are not located at the bed, but half a grid
box above it. Instead, a logarithmic velocity profile is assumed in the bottom layer, leading to a
quadratic friction law, see section 8.13.9.

At the surface, the dynamic boundary conditions read:

(νt + ν)∂zu = ατxs ,

(νt + ν)∂zv = ατys ,
(9)

The surface stresses (normalised by the reference density) τxs and τys are calculated as functions
of wind speed, wind direction, surface roughness etc. Also here, the drying parameter α is included
in order to provide an easy handling of drying and flooding.

3.1.4 Lateral boundary conditions

Let G denote the lateral boundary of the model domain with the closed land boundary Gc and
the open boundary Go such that Gc ∪Go = G and Gc ∩Go = ∅. Let further ~u = (u, v) denote the
horizontal velocity vector and ~un = (−v, u) its normal vector. At closed boundaries, the flow must
be parallel to the boundary:

~un · ~∇Gc = 0 (10)

with ~∇ = (∂x, ∂y) being the gradient operator.
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For an eastern or a western closed boundary with ~∇Gc = (0, 1) this has the consequence that

u = 0 and, equivalently, for a southern or a northern closed boundary with ~∇Gc = (1, 0) this has
the consequence that v = 0.

At open boundaries, the velocity gradients across the boundary vanish:

~∇nu · ~∇Go = 0, ~∇nv · ~∇Go = 0, (11)

with ~∇n = (−∂y, ∂x) being the operator normal to the gradient operator.
For an eastern or a western open boundary with this has the consequence that ∂xu = ∂xv = 0

and, equivalently, for a southern or a northern open boundary this has the consequence that
∂yu = ∂yv = 0.

At so-called forced open boundaries, the sea surface elevation ζ is prescribed. At passive open
boundaries, it is assumed that the curvature of the surface elevation normal to the boundary is zero,
with the consequence that the spatial derivatives of the surface slopes normal to the boundaries
vanish.

3.2 GETM as slice model

By chosing the compiler option SLICE_MODEL it is possible to operate GETM as a two-dimensional
vertical (xz-)model under the assumption that all gradients in y-direction vanish. In order to do
so, a bathymetry file with a width of 4 grid points has to be generated, with the outer (j = 1,
j = 4) bathymetry values set to land, and the two inner ones being independent on j. The compiler
option SLICE_MODEL then sets the transports, velocities, and sea surface elevations such that they
are independent of y, i.e. they are forced to be identical for the same j-index. Especially, the
V -transports and velocities in the walls (j = 1, j = 3) are set to the calculated value at index
j = 2.

4 Transformations

4.1 General vertical coordinates

As a preparation of the discretisation, the physical space is vertically divided into N layers. This is
done by introducing internal surfaces zk, k = 1, . . . , N − 1 which do not intersect, each depending
on the horizontal position (x, y) and time t. Let

−H(x, y) = z0(x, y) < z1(x, y, t) < · · · < zN−1(x, y, t) < zN (x, y, t) = ζ(x, y, t) (12)

define the local layer depths hk with

hk = zk − zk−1. (13)

for 1 ≤ k ≤ N . For simplicity, the argument (x, y, t) is omitted in most of the cases.
The most simple layer distribution is given by the so-called σ transformation (see Phillips

(1957) for a first application in meteorology and Freeman et al. (1972) for a first application in
hydrodynamics) with

σk =
k

N
− 1 (14)

and

zk = Dσk (15)
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for 0 ≤ k ≤ N .
The σ-coordinates can also be refined towards the surface and the bed:

βk =
tanh ((dl + du)(1 + σk)− dl) + tanh(dl)

tanh(dl) + tanh(du)
− 1, k = 0, . . . , N (16)

such that z-levels are obtained as follows:

zk = Dβk (17)

for 0 ≤ k ≤ N .
The grid is refined towards the surface for du > 0 and refined towards the bottom for dl > 0.

When both, du and dl are larger than zero, then refinement towards surface and bed is obtained.
For du = dl = 0 the σ-transformation (14) with βk = σk is retained. Figure 1 shows four examples
for vertical layer distributions obtained with the σ-transformation.

Due to the fact that all layer thicknesses are proportional to the water depth, the equidistant and
also the non-equidistant σ-transformations, (14) and (16), have however one striking disadvantage.
In order to sufficiently resolve the mixed layer also in deep water, many layers have to be located
near the surface. The same holds for the bottom boundary layer. This problem of σ-coordinates
has been discussed by several authors (see e.g. Deleersnijder and Ruddick (1992), de Kok (1992),
Gerdes (1993), Song and Haidvogel (1994), Burchard and Petersen (1997)) who suggested methods
for generalised vertical coordinates not resulting in layer thicknesses not proportional to the water
depth.

The generalised vertical coordinate introduced here is a generalisation of the so-called mixed-
layer transformation suggested by Burchard and Petersen (1997). It is a hybrid coordinate which
interpolates between the equidistant and the non-equidistant σ-transformations given by (14) and
(16). The weight for the interpolation depends on the ratio of a critical water depth Dγ (below
which equidistant σ-coordinates are used) and the actual water depth:

zk = D (αγσk + (1− αγ)βk) (18)

with

αγ = min

(

(βk − βk−1)− Dγ

D (σk − σk−1)

(βk − βk−1)− (σk − σk−1)
, 1

)

. (19)

and σk from (14) and βk from (16).
For inserting k = N in (19) and dl = 0 and du > 0 in (16), the mixed layer transformation

of Burchard and Petersen (1997) is retained, see the upper two panels in figure 2. Depending on
the values for Dγ and du, some near-surface layer thicknesses will be constant in time and space,
allowing for a good vertical resolution in the surface mixed layer.

The same is obtained for the bottom with the following settings: k = 1, dl > 0 and du = 0,
see the lower two panels in figure 2. This is recommended for reproducing sedimentation dynamics
and other benthic processes. For dl = du > 0 and k = 1 or k = N a number of layers near the
surface and near the bottom can be fixed to constant thickness. Intermediate states are obtained
by intermediate settings, see figure 3. Some pathological settings are also possible, such as k = 1,
dl = 1.5 and du = 5, see figure 4.

The strong potential of the general vertical coordinates concept is the extendibility towards
vertically adaptive grids. Since the layers may be redistributed after every baroclinic time step,
one could adapt the coordinate distribution to the internal dynamics of the flow. One could for
example concentrate more layers at vertical locations of high stratification and shear, or force
certain layer interfaces towards certain isopycnals, or approximate Lagrangian vertical coordinates
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Figure 1: σ-transformation with four different zooming options. The plots show the vertical layer
distribution for a cross section through the North Sea from Scarborough in England to Esbjerg in
Denmark. The shallow area at about x = 100 nm is the Doggerbank.
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Figure 2: Boundary layer transformation (or γ transformation) with concentration of layers in the
surface mixed layer (upper two panels) and with concentration of layers in the bottom mixed layer
(lower two panels). The critical depth Dγ is here set to 20 m, such that at all shallower depths
the equidistant σ-transformation is used. The same underlying bathymetry as in figure 1 has been
used.
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Figure 3: Boundary layer transformation (or γ transformation) with concentration of layers in
both, the surface mixed layer and the bottom mixed layer. Four different realisations are shown.
The critical depth Dγ is here set to 20 m, such that at all shallower depths the equidistant σ-
transformation is used. The same underlying bathymetry as in figure 1 has been used.
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Figure 4: Two pathological examples for the boundary layer transformation. The critical depth
Dγ is here set to 20 m, such that at all shallower depths the equidistant σ-transformation is used.
The same underlying bathymetry as in figure 1 has been used.
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by minimising the vertical advection through layer interfaces. The advantages of this concept have
recently been demonstrated for one-dimensional water columns by Burchard and Beckers (2004).
The three-dimensional generalisation of this concept of adaptive grids for GETM is currently under
development.

4.2 Layer-integrated equations

There are two different ways to derive the layer-integrated equations. Burchard and Petersen
(1997) transform first the equations into general vertical coordinate form (see Deleersnijder and
Ruddick (1992)) and afterwards integrate the transformed equations over constant intervals in the
transformed space. Lander et al. (1994) integrate the equations in the Cartesian space over surfaces
zk by considering the Leibniz rule

∫ zk

zk−1

∂xf dz = ∂x

∫ zk

zk−1

f dz − f(zk)∂xzk + f(zk−1)∂xzk−1 (20)

for any function f . For the vertical staggering of the layer notation see figure 7.
More details about the layer integration are given in Burchard and Petersen (1997).
With the further definitions of layer integrated transport,

pk :=

∫ zk

zk−1

u dz, qk :=

∫ zk

zk−1

v dz, (21)

layer mean velocities,

uk :=
pk
hk

, vk :=
qk
hk

, (22)

and layer averaged tracer concentrations and buoyancy,

cik :=
1

hk

∫ zk

zk−1

ci dz, bk :=
1

hk

∫ zk

zk−1

b dz, (23)

and the grid related vertical velocity,

w̄k := (w − ∂tz − u∂xz − v∂yz)z=zk , (24)

the continuity equation (3) has the layer-integrated form:

∂thk + ∂xpk + ∂yqk + w̄k − w̄k−1 = 0. (25)

It should be noted that the grid related velocity is located on the layer interfaces. After this,
the layer-integrated momentum equations read as:

∂tpk + w̄kũk − w̄k−1ũk−1 − τxk + τxk−1

+α

{

∂x(ukpk) + ∂y(vkpk)

−∂x
(
2AM

k hk∂xuk

)
− ∂y

(
AM

k hk(∂yuk + ∂xvk)
)
− fqk

−hk




1

2
hN (∂∗

xb)N +
N−1∑

j=k

1

2
(hj + hj+1)(∂

∗
xb)j





}

= −ghk∂xζ,

(26)
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∂tqk + w̄kṽk − w̄k−1ṽk−1 − τyk + τyk−1

+α

{

∂x(ukqk) + ∂y(vkqk)

−∂y
(
2AM

k hk∂yvk
)
− ∂x

(
AM

k hk(∂yuk + ∂xvk)
)
+ fpk

−hk




1

2
hN (∂∗

yb)N +

N−1∑

j=k

1

2
(hj + hj+1)(∂

∗
yb)j





}

= −ghk∂yζ

(27)

with suitably chosen advective horizontal velocities ũk and ṽk (see section 8.13.7) on page 173,
the shear stresses

τxk = (νt∂zu)k , (28)

and

τyk = (νt∂zv)k , (29)

and the horizontal buoyancy gradients

(∂∗
xb)k =

1

2
(∂xbk+1 + ∂xbk)− ∂xzk

bk+1 − bk
1
2 (hk+1 + hk)

(30)

and

(∂∗
yb)k =

1

2
(∂ybk+1 + ∂ybk)− ∂yzk

bk+1 − bk
1
2 (hk+1 + hk)

. (31)

The layer integration of the pressure gradient force is discussed in detail by Burchard and
Petersen (1997).

A conservative formulation can be derived for the recalculation of the physical vertical velocity
w which is convenient in the discrete space if w is evaluated at the layer centres (see Deleersnijder
and Ruddick (1992)):

wk =
1

hk

(
∂t(hkzk−1/2) + ∂x(pkzk−1/2) + ∂y(qkzk−1/2) + w̄kzk − w̄k−1zk−1

)
. (32)

It should be mentioned that w only needs to be evaluated for post-processing reasons.
For the layer-integrated tracer concentrations, we obtain the following expression:

∂t(hkc
i
k) + ∂x(pkc

i
k) + ∂y(qkc

i
k) + (w̄k + ws

k)c̃
i
k − (w̄k−1 + ws

k−1)c̃
i
k−1

−(ν′t∂zc
i)k + (ν′t∂zc

i)k−1 − ∂x
(
AT

k hk∂xc
i
k

)
− ∂y

(
AT

k hk∂yc
i
k

)
= Qi

k.
(33)

It should be noted that the ”horizontal” diffusion does no longer occur along geopotential sur-
faces but along horizontal coordinate lines. The properly transformed formulation would include
some cross-diagonal terms which may lead to numerical instabilities due to violation of mono-
tonicity. For an in-depth discussion of this problem, see Beckers et al. (1998) and Beckers et al.
(2000).
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4.3 Horizontal curvilinear coordinates

In this section, the layer-integrated equations from section 4 are transformed to horizontal orthog-
onal curvilinear coordinates. Similarly to general coordinates in the vertical, these allow for much
more flexibility when optimising horizontal grids to coast-lines and bathymetry. Furthermore, this
type of coordinates system includes spherical coordinates as a special case. The derivation of the
transformed equations is carried out here according to Haidvogel and Beckmann (1999), see also
Arakawa and Lamb (1977).

A rectangular domain with non-dimensional side lengths and with local Cartesian coordinates
X and Y is mapped to a physical domain with four corners in such a way that the local coordinates
of the physical space, (ξx, ξy) are orthogonal to each others everywhere:

X → ξx, Y → ξy. (34)

The infinitesimal increments in the physical space, d ξx and d ξy are related to the infinitesimal
increments in the transformed space, dX and dY by so-called metric coefficients m(x, y) and
n(x, y):

d ξx =

(
1

m

)

dX , d ξy =

(
1

n

)

dY. (35)

These metric coefficients have the physical unit of [m−1]. With m = n =const, Cartesian
coordinates are retained, and with

m =
1

rE cosφ
, n =

1

rE
, (36)

spherical coordinates with X = λ and Y = φ are retained (with the Earth’s radius rE , longitude
λ and latitude φ).

With these notations, the layer-integrated equations (25), (26), and (27) given in section 4 can
be formulated as follows:

Continuity equation:

∂t

(
hk

mn

)

+ ∂X

(pk
n

)

+ ∂Y

(qk
m

)

+
w̄k − w̄k−1

mn
= 0. (37)

Momentum in ξx direction:

∂t

( pk
mn

)

+
w̄kũk − w̄k−1ũk−1

mn
− τXk − τXk−1

mn

+α

{

∂X

(ukpk
n

)

+ ∂Y

(vkpk
m

)

− qk

(
f

mn
+ vk∂X

(
1

n

)

− uk∂Y

(
1

m

))

−∂X

(
2AM

k hk

n
m∂Xuk

)

− ∂Y

(
AM

k hk

m
(n∂Yuk +m∂X vk)

)

−hk

n




1

2
hN (∂∗

X b)N +
N−1∑

j=k

1

2
(hj + hj+1)(∂

∗
X b)j





}

= −g
hk

n
∂X ζ.

(38)
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Momentum in ξy direction:

∂t

( qk
mn

)

+
w̄kṽk − w̄k−1ṽk−1

mn
−

τYk − τYk−1

mn

+α

{

∂X

(ukqk
n

)

+ ∂Y

(vkqk
m

)

+ pk

(
f

mn
+ vk∂X

(
1

n

)

− uk∂Y

(
1

m

))

−∂Y

(
2AM

k hk

m
n∂Yvk

)

− ∂X

(
AM

k hk

n
(n∂Yuk +m∂X vk)

)

−hk

m




1

2
hN (∂∗

Yb)N +
N−1∑

j=k

1

2
(hj + hj+1)(∂

∗
Yb)j





}

= −g
hk

m
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(39)

In (38) and (39), the velocity and momentum components uk and pk are now pointing into the
ξx-direction and vk and qk are pointing into the ξy-direction. The stresses τ

X
k and τYk are related to

these directions as well. In order to account for this rotation of the velocity and momentum vectors,
the rotational terms due to the Coriolis rotation are extended by terms related to the gradients of
the metric coefficients. This rotation is here not considered for the horizontal diffusion terms in
order not to unnecessarily complicate the equations. Instead we use the simplified formulation by
Kantha and Clayson (2000b), who argue that it does not make sense to use complex formulations
for minor processes with highly empirical parameterisations.

Finally, the tracer equation is of the following form after the transformation to curvilinear
coordinates:
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mn
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(40)

5 Discretisation

5.1 Mode splitting

The external system consisting of the surface elevation equation (57) and the transport equations
(61) and (62) underlies a strict time step constraint if the discretisation is carried out explicitly:

∆t <

[
1

2

(
1

∆x
+

1

∆y

)
√

2gD

]−1

. (41)

In contrast to that, the time step of the internal system is only depending on the Courant
number for advection,

∆t < min

{
∆x

umax
,
∆y

vmax

}

, (42)

23



which in the case of sub-critical flow is a much weaker constraint. In order not to punish the
whole model with a small time step resulting from the external system, two different approaches
of mode splitting have been developed in the past.

The first approach, in which the external mode is calculated implicitly, has been proposed
by Madala and Piacsek (1977). This method is numerically stable (if advection is absent) for
unconditionally long time steps. The temporal approximation is of second order if semi-implicit
treatment is chosen. In such models, the external and internal mode are generally calculated with
the same time steps (see e.g. Backhaus (1985)). The introduction of interactions terms like (63) -
(70) is thus not necessary in such models.

Another approach is to use different time steps for the internal (macro times steps ∆t) and the
external mode (micro time steps ∆tm). One of the first free surface models which has adopted this
method is the Princeton Ocean Model (POM), see Blumberg and Mellor (1987). This method has
the disadvantage that interaction terms are needed for the external mode and that the consistency
between internal and external mode is difficult to obtain. The advantage of this method is that the
free surface elevation is temporally well resolved which is a major requirement for models including
flooding and drying. That is the reason why this method is adopted here.

The micro time step ∆tm has to be an integer fraction M of the macro time step ∆t. ∆tm is
limited by the speed of the surface waves (41), ∆t is limited by the current speed (42). The time
stepping principle is shown in figure 5. The vertically integrated transports are averaged over each
macro time step:

Ū
n+1/2
i,j =

1

M

n+(M−0.5)/M
∑

l=n+0.5/M

U l
i,j (43)

and

V̄
n+1/2
i,j =

1

M

n+(M−0.5)/M
∑

l=n+0.5/M

V l
i,j (44)

such that

ζn+1
i,j − ζni,j

∆t
= −

Ū
n+1/2
i,j − Ū

n+1/2
i−1,j

∆x
−

V̄
n+1/2
i,j − V̄

n+1/2
i,j−1

∆y
. (45)

5.2 Spatial discretisation

For the spatial discretisation, a staggered C-grid is used, see Arakawa and Lamb (1977). The grid
consists of prism-shaped finite volumes with the edges aligned with coordinates. The reference
grid for the tracer points (from now on denoted by T-points) is shown in figures 6 and 7. The
velocity points are located such that the corresponding velocity components are centralised on the
surfaces of the T-point reference box, the u-velocity points (from now on U-points) at the western
and eastern surfaces, the v-velocity points (from now on V-points) at the southern and northern
surfaces and the w-velocity points (from now on W-points) at the lower and upper surfaces.

The indexing is carried out with i-indices in eastern (X -) direction, with j-indices in northern
(Y-) direction and with k-indices in upward (z-) direction, such that each grid point is identified
by a triple (i, j, k). A T-point and the corresponding eastern U-point, the northern V-point and
the above W-point have always the same index, see figures 6 and 7. The different grid points cover
the following index ranges:
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Figure 5: Sketch explaining the organisation of the time stepping.
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Figure 6: Layout of the model horizontal model grid in Cartesian coordinates. Shown are the
reference boxes for the T-points. The following symbols are used: +: T-points; ×: U-points; ⋆:
V-points; •: X-points. The inserted box denotes grid points with the same index (i, j).
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Figure 7: Layout of the model vertical model grid through the U-points. Shown are the reference
boxes for the T-points. The following symbols are used: +: T-points; ×: U-points; △: W-points;
◦: Xu-points. The inserted box denotes grid points with the same index (i, k). The grid in the
(j, k)-plane through the V-points is equivalent.
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(xi−1,j , yi−1,j)
(xi,j , yi,j)

(xi,j−1, yi,j−1)

(xi−1,j−1, yi−1,j−1)

Figure 8: Grid layout and indexing of corner points for curvilinear grids.

T-points: 1 ≤ i ≤ imax, 1 ≤ j ≤ jmax, 1 ≤ k ≤ kmax

U-points: 0 ≤ i ≤ imax, 1 ≤ j ≤ jmax, 1 ≤ k ≤ kmax

V-points: 1 ≤ i ≤ imax, 0 ≤ j ≤ jmax, 1 ≤ k ≤ kmax

W-points: 1 ≤ i ≤ imax, 1 ≤ j ≤ jmax, 0 ≤ k ≤ kmax

(46)

On the T-points, all tracers such as temperature T , salinity S, the general tracers ci and the
density are located. All turbulent quantities such as eddy viscosity νt and eddy diffusivity ν′t are
located on the W-points.

For curvilinear grids, several arrays for spatial increments ∆x and ∆y have to be defined:
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∆xc
i,j =

∣
∣
∣
∣ 1
2 (Xi,j−1 +Xi,j −Xi−1,j−1 −Xi−1,j)

∣
∣
∣
∣

∆xu
i,j =

∣
∣
∣
∣ 1
4 (Xi+1,j−1 +Xi+1,j −Xi−1,j−1 −Xi−1,j)

∣
∣
∣
∣

∆xv
i,j = ||Xi,j −Xi−1,j ||

∆x+
i,j =

∣
∣
∣
∣ 1
2 (Xi+1,j −Xi−1,j)

∣
∣
∣
∣

∆yci,j =
∣
∣
∣
∣ 1
2 (Xi−1,j +Xi,j −Xi−1,j−1 −Xi,j−1)

∣
∣
∣
∣

∆yui,j = ||Xi,j −Xi,j−1||

∆yvi,j =
∣
∣
∣
∣ 1
4 (Xi−1,j+1 +Xi,j+1 −Xi−1,j−1 −Xi,j−1)

∣
∣
∣
∣

∆y+i,j =
∣
∣
∣
∣ 1
2 (Xi,j+1 −Xi,j−1)

∣
∣
∣
∣

(47)

where ||Xi,j −Xi−1,j || =
(
(xi,j − xi−1,j)

2 + (yi,j − yi−1,j)
2
)1/2

. The superscripts c, u, v,+ in
(47) indicate whether a ∆x or ∆y is centrered at a T-, U-, V-, or X-point, respectively. For the
locations of the corner points Xi,j = (xi,j , yi,j), see figure 8.

5.3 Lateral boundary conditions

Usually, a land mask is defined on the horizontal numerical grid. This mask is denoted by az for
T-points, au for U-points and av for V-points with az, au, and av being integer fields. A T-point
is either a land point (az = 0) or a water point (az > 0). All U- and V-points surrounding a land
point are defined as closed boundary and masked out: au = 0 and av = 0. The velocities on such
closed boundaries are always set to 0.

Open boundaries are defined by az > 1 for T-points. Forced boundary points are marked by
az = 2 and passive boundary points by az = 3. All other T-points are characterised by az = 1. For
velocity points, three different types are defined at the open boundaries. U-points are classified by
au = 3 if both the T-points east and west are open boundary points and by au = 2 if one adjacent
T-point is an open boundary point and the other an open water point with az = 1. The same is
carried out for V-points: They are classified by av = 3 if both the T-points south and north are
open boundary points and by av = 2 if one adjacent T-point is an open boundary point and the
other an open water point with az = 1. U-points which are adjacent to T-points with az = 2 and
which are not denoted by au = 2 or au = 3 are the external U-points and are denoted by au = 4.
The same holds for V-points: Those which are adjacent to T-points with az = 2 and which are not
denoted by av = 2 or av = 3 are the external V-points and are denoted by av = 4. For a simple
example of grid point classification, see figure 9.

When the barotropic boundary forcing is carried out by means of prescribed surface elevations
only, then the surface elevation ζ is prescribed in all T-points with az = 2. For passive boundary
conditions (az = 3), where the curvature of the surface elevation is zero normal to the boundary,
the surface slope is simply extrapolated to the boundary points. For a boundary point (i, j) at the
western boundary this results e.g. in the following calculation for the boundary point:

ζi,j = ζi+1,j + (ζi+1,j − ζi+2,j) = 2ζi+1,j − ζi+2,j . (48)
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Figure 9: Classification of grid points for a simple 5 × 5 configuration (imax = jmax = 5). On
the locations for T-, U- and V-points, the values of az, au, and av, respectively, are written. The
northern and eastern boundaries are closed and the western and southern boundaries are open and
forced.
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5.4 Bed friction

As already mentioned earlier in section 3.1.3, caution is needed when discretising the bottom
boundary conditions for momentum, (8). They are an example for a physical condition which
has to be modified for the numerical discretisation, since the discrete velocity point nearest to
the bottom is half a grid box away from the point where the boundary condition is defined.
Furthermore, due to the logarithmic law, high velocity gradients are typical near the bed. Simply
setting the discrete bottom velocity to zero, would therefore lead to large discretisation errors.
Instead, a flux condition using bottom stresses is derived from the law of the wall.

For the determination of the normalised bottom stresses

τxb
ρ0

= ubx
∗ ub

∗, (49)

τyb
ρ0

= uby
∗ ub

∗ (50)

with the friction velocities ub
∗ =

√

τb/ρ0 with τb =
√

(τxb )
2 + (τyb )

2, assumptions about the
structure of velocity inside the discrete bottom layer have to be made. We use here the logarithmic
profile

u(z′)

u∗

=
1

κ
ln

(
z′ + zb0

zb0

)

, (51)

with the bottom roughness length zb0, the von Kármán constant κ = 0.4 and the distance from
the bed, z′. Therefore, estimates for the velocities in the centre of the bottom layer can be achieved
by:

ub =
ubx
∗

κ
ln

(
0.5h1 + zb0

zb0

)

, (52)

vb =
uby
∗

κ
ln

(
0.5h1 + zb0

zb0

)

. (53)

For h1 → 0, the original Dirichlet-type no-slip boundary conditions (8) are retained. Another
possibility would be to specify the bottom velocities ub and vb such that they are equal to the layer-
averaged log-law velocities (see Baumert and Radach (1992)). The calculation of this is however
slightly more time consuming and does not lead to a higher accuracy.

5.5 Drying and flooding

The main requirement for drying and flooding is that the vertically integrated fluxes U and V are
controlled such that at no point a negative water depth occurs. It is clear that parts of the physics
which play an important role in very shallow water of a few centimetres depth like non-hydrostatic
effects are not included in the equations. However, the model is designed in a way that the control
of U and V in very shallow water is mainly motivated by the physics included in the equations
rather than by defining complex drying and flooding algorithms. It is assumed that the major
process in this situation is a balance between pressure gradient and bottom friction. Therefore, in
the case of very shallow water, all other terms are multiplied with the non-dimensional factor α
which approaches zero when a minimum water depth is reached.

By using formulation (71) for calculating the bottom drag coefficient R, it is guaranteed that R
is exponentially growing if the water depth approaches very small values. This slows the flow down
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−Hi+1,j

Figure 10: Sketch explaining the principle of pressure gradient minimisation during drying and
flooding over sloping bathymetry.
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when the water depth in a velocity point is sinking and also allows for flooding without further
manipulation.

In this context, one important question is how to calculated the depth in the velocity points,
Hu and Hv, since this determines how shallow the water in the velocity points may become on
sloping beaches. In ocean models, usually, the depth in the velocity points is calculated as the
mean of depths in adjacent elevation points (T-points):

Hu
i,j =

1

2
(Hi,j +Hi+1,j) , Hv

i,j =
1

2
(Hi,j +Hi,j+1) . (54)

Other models which deal with drying and flooding such as the models of Duwe (1988) and
Casulli and Cattani (1994) use the minimum of the adjacent depths in the T-points:

Hu
i,j = min{Hi,j , Hi+1,j}, Hv

i,j = min{Hi,j , Hi,j+1}. (55)

This guarantees that all depths in the velocity points around a T-point are not deeper than the
depth in the T-point. Thus, when the T-point depth is approaching the minimum depth, then all
depths in the velocity points are also small and the friction coefficient correspondingly large.

Each of the methods has however drawbacks: When the mean is taken as in (54), the risk of
negative water depths is relatively big, and thus higher values of Dmin have to be chosen. When
the minimum is taken, large mud-flats might need unrealistically long times for drying since all
the water volume has to flow through relatively shallow velocity boxes. Also, velocities in these
shallow boxes tend to be relatively high in order to provide sufficient transports. This might lead
to numerical instabilities.

Therefore, GETM has both options, (54) and (55) and the addition of various other options such
as depth depending weighting of the averaging can easily be added. These options are controlled
by the GETM variable vel_depth_method, see section 6.1.9 (subroutine uv_depths) documented
on page 44.

If a pressure point is dry (i.e. its bathymetry value is higher than a neighbouring sea surface
elevation), the pressure gradient would be unnaturally high with the consequence of unwanted flow
acceleration. Therefore this pressure gradient will be manipulated such that (only for the pressure
gradient calculation) a virtual sea surface elevation ζ̃ is assumed (see figure 10). In the situation
shown in figure 10, the left pressure point is dry, and the sea surface elevation there is for numerical
reasons even slightly below the critical value −Hi,j +Hmin. In order not to let more water flow out
of the left cell, the pressure gradient between the two boxes shown is calculated with a manipulated
sea surface elevation on the right, ζ̃i+1,j .

See also Burchard et al. (2004) for a description of drying and flooding numerics in GETM.
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6 Introduction to the calculation domain

This module handles all tasks related to the definition of the computational domain - except
reading in variables from file. The required information depends on the grid type and also on the
complexity of the model simulation to be done.
The mandatory varible grid type read from the file containing the bathymetry and coordinate
information (presently only NetCDF is supported) is guiding subsequent tasks. grid type can take
the following values:

1: equi-distant plane grid - dx, dy are constant - but not necessarily equal

2: equi-distant spherical grid - dlon, dlat are constant - and again not necessarily equal

3: curvilinear grid in the plane - dx, dy are both functions of (i,j). The grid must be orthogonal

For all values of grid type the bathymetry given on the T-points (see the GETM manual for
definition) must be given.

Based on the value of grid type the following additional variables are required:

1: proper monotone coordinate informtion in the xy-plane with equidistant spacing. The name
of the coordinate variables are xcord and ycord.

2: proper monotone coordinate informtion on the sphere with equidistant spacing in longitude
and latitude. The names of the coordinate variables are xcord and ycord.

3: position in the plane of the grid-vertices. These are called X-points in GETM. The names of
these two variables are xx and yx.

In addition to the above required grid information the following information is necessary for
specific model configurations:

A: latu and latv
If f plane is false information about the latitude of U- and V-points are required for calcu-
lating the Coriolis term correctly. For grid type = 1 latu and latv are calculated based on an
additional field latc i.e. the latitude of the T-points. For grid type = 3 latx i.e. the latitude
of the X-points will have to be provided in order to calculate latu and latv.

B: lonc, latc and convc
The longitude, latitude positions of the T-points are required when using forcing from a
NWP-model. lonc and latc are used to do spatial interpolation from the meteo-grid to the
GETM model and convc is the rotation of the local grid from true north.

In addition to the information above a few files are optionally read in init domain(). Informa-
tion about open boundaries, modifications to the bathymetry and the calculation masks are are
done via simple ASCII files.
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6.1 Fortran: Module Interface domain - sets up the calculation domain.
(Source File: domain.F90)

INTERFACE:

module domain

DESCRIPTION:

This module provides all variables related to the bathymetry and model grid. The public subrou-
tine init domain() is called once and upon successful completion the bathymetry has been read
and optionally modified, the calculation masks have been setup and all grid related variables have
been initialised.
The domain-module depends on another module doing the actual reading of variables from files.
This is provided through the generic subroutine read topo file. This subroutine takes two param-
eters - 1) a fileformat and 2) a filename. Adding a new input file format is thus straight forward
and can be done without any changes to domain. Public variables defined in this module is used
through out the code. USES:

use exceptions
use halo_zones, only: update_2d_halo,wait_halo
use halo_zones, only: H_TAG,U_TAG,V_TAG
IMPLICIT NONE

PUBLIC DATA MEMBERS:

integer :: bathy_format = NETCDF

integer :: grid_type = 1
integer :: vert_cord = 1
integer :: il=-1,ih=-1,jl=-1,jh=-1
global index range
integer :: ilg=-1,ihg=-1,jlg=-1,jhg=-1
local index range
integer :: ill=-1,ihl=-1,jll=-1,jhl=-1

logical :: have_lonlat = .true.
logical :: have_xy = .true.

REALTYPE :: rearth

REALTYPE :: maxdepth = -1.
REALTYPE :: ddu = -_ONE_
REALTYPE :: ddl = -_ONE_
REALTYPE :: d_gamma = 20.
logical :: gamma_surf = .true.
REALTYPE, allocatable, dimension(:) :: ga

integer :: NWB=-1,NNB=-1,NEB=-1,NSB=-1,NOB
integer :: calc_points
logical :: openbdy = .false.

REALTYPE :: Hland=-10.0
REALTYPE :: min_depth,crit_depth

REALTYPE :: longitude = _ZERO_
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REALTYPE :: latitude = _ZERO_
logical :: f_plane = .true.
logical :: check_cfl = .true.

#ifdef STATIC
#include "static_domain.h"
#else
#include "dynamic_declarations_domain.h"
#endif

integer :: nsbv

integer :: ioff=0,joff=0
integer, dimension(:), allocatable :: bdy_2d_type
integer, dimension(:), allocatable :: bdy_3d_type
integer, dimension(:), allocatable :: wi,wfj,wlj
integer, dimension(:), allocatable :: nj,nfi,nli
integer, dimension(:), allocatable :: ei,efj,elj
integer, dimension(:), allocatable :: sj,sfi,sli
integer, allocatable :: bdy_index(:),bdy_map(:,:)
logical :: have_boundaries=.false.

character(len=64) :: bdy_2d_desc(5)
logical :: need_2d_bdy_elev = .false.
logical :: need_2d_bdy_u = .false.
logical :: need_2d_bdy_v = .false.

REALTYPE :: cori= _ZERO_

method for specifying bottom roughness (0=const, 1=from topo.nc)
integer :: z0_method=0
REALTYPE :: z0_const=0.01d0

DEFINED PARAMETERS:

integer, parameter :: INNER = 1
REALTYPE, private, parameter :: pi = 3.141592654
REALTYPE, private, parameter :: deg2rad = pi/180.
REALTYPE, private, parameter :: omega = 2.*pi/86164.

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

REALTYPE, parameter :: rearth_default = 6378815.
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6.1.1 init domain() - initialise the computational domain

INTERFACE:

subroutine init_domain(input_dir,runtype)
IMPLICIT NONE

DESCRIPTION:

This routine is responsible for setting up the bathymetry and the grid information.
The following steps are done in init domain():

1: partition of the calculation domain - important for parallel runs

2: reading bathymetry and grid information through the generic subroutine read topo file

3: optionally set minimum depth in regions

4: optionally adjust the depth in regions

5: optionally adjust the depth in regions

6: calculate the mask for T-points

7: optionally adjust the mask in regions

8: read boundary information and adjust masks

9: calculate masks for U-, V- and X-points

10: calculate additional grid-information - like latu and latv

11: calculate metrics - i.e. all necessary grid-spacings

12: calculate Coriolis parameter - can be constant or spatially varying

INPUT/OUTPUT PARAMETERS:

character(len=*) :: input_dir
integer, intent(in) :: runtype

REVISION HISTORY:

LOCAL VARIABLES:

integer :: rc
integer :: np,sz
integer :: i,j,n
integer :: kdum
character(len=PATH_MAX) :: bathymetry = ’topo.nc’
integer :: vel_depth_method=0
character(len=PATH_MAX) :: bdyinfofile = ’bdyinfo.dat’
character(len=PATH_MAX) :: min_depth_file = ’minimum_depth.dat’
character(len=PATH_MAX) :: bathymetry_adjust_file = ’bathymetry.adjust’
character(len=PATH_MAX) :: mask_adjust_file = ’mask.adjust’
namelist /domain/ &

vert_cord,maxdepth, &
bathy_format,bathymetry,vel_depth_method, &
longitude,latitude,f_plane,openbdy,bdyinfofile, &
crit_depth,min_depth,kdum,ddu,ddl, &
d_gamma,gamma_surf,il,ih,jl,jh,z0_method,z0_const,&
check_cfl
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6.1.2 x2uvc() - interpolate grid-points

INTERFACE:

subroutine x2uvc()
IMPLICIT NONE

DESCRIPTION:

This routine interpolates (latx,lonx), (xx,yx), and convx to the u-points, v-points, and the central
T-points. The data at the T-points are only updated from values of the X-points if the logical flags
updateXYC, updateXYC, and updateXYC are .true.. This is not necessary if data at the T-points
have been read from the topo input file. REVISION HISTORY:

Original author(s): Lars Umlauf

LOCAL VARIABLES:

integer :: i,j,n
REALTYPE :: x
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6.1.3 metric() - calculate metric coefficients

INTERFACE:

subroutine metric()
IMPLICIT NONE

DESCRIPTION:

Computes the grid increments and areas related to the metric coefficients. REVISION HIS-
TORY:

Original author(s): Lars Umlauf

LOCAL VARIABLES:

integer :: i,j
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6.1.4 set min depth() - set the minimum depth in regions

INTERFACE:

subroutine set_min_depth(fn)
IMPLICIT NONE

DESCRIPTION:

Read region definitions and minimum depth for those regions. Adjust the bathymetry (variable
H) accordingly. INPUT PARAMETERS:

character(len=*), intent(in) :: fn

REVISION HISTORY:

LOCAL VARIABLES:

integer :: unit = 25 ! kbk
character(len=255) :: line
integer :: iostat
integer :: i,j,k=0,n=-1
integer :: il,jl,ih,jh
integer :: i1,j1
REALTYPE :: dmin
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6.1.5 adjust bathymetry() - read mask adjustments from file.

INTERFACE:

subroutine adjust_bathymetry(fn)
IMPLICIT NONE

DESCRIPTION:

Read bathymetry adjustments from file. INPUT PARAMETERS:

character(len=*), intent(in) :: fn

REVISION HISTORY:

LOCAL VARIABLES:

integer :: unit = 25 ! kbk
character(len=255) :: line
integer :: iostat
integer :: i,j,k=0,n=-1
integer :: il,jl,ih,jh
REALTYPE :: x
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6.1.6 adjust mask() - read mask adjustments from file.

INTERFACE:

subroutine adjust_mask(fn)
IMPLICIT NONE

DESCRIPTION:

Read mask adjustments from file. The file format allows comments. Comment characters are !
or # - they MUST be in column 1. Lines with white-spaces are skipped. Conversion errors are
caught and an error condition occurs. INPUT PARAMETERS:

character(len=*), intent(in) :: fn

REVISION HISTORY:

LOCAL VARIABLES:

integer :: unit = 25 ! kbk
character(len=255) :: line
integer :: iostat
integer :: i,j,k=0,n=-1
integer :: il,jl,ih,jh
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6.1.7 print mask() - prints a mask in readable format

INTERFACE:

subroutine print_mask(mask)
IMPLICIT NONE

DESCRIPTION:

Prints a integer mask in a human readable form. INPUT PARAMETERS:

integer, intent(in), dimension(E2DFIELD) :: mask

REVISION HISTORY:

22Apr99 Karsten Bolding & Hans Burchard Initial code.

LOCAL VARIABLES:

integer :: i,j
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6.1.8 part domain() - partition the domain (Source File: part domain.F90)

INTERFACE:

subroutine part_domain()

DESCRIPTION:

Set various integers defining the calculation domain. The settings depends on STATIC vs. DY-
NAMIC compilation and serial vs. parallel model run. USES:

use domain, only: iextr,jextr
use domain, only: imin,imax,jmin,jmax,kmax
use domain, only: ioff,joff

#ifdef GETM_PARALLEL
use halo_mpi, only: part_domain_mpi

#endif
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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6.1.9 uv depths - calculate depths in u and v points.

INTERFACE:

subroutine uv_depths(vel_depth_method)

DESCRIPTION:

In this routine which is called once during the model initialisation, the bathymetry value in the
U- and the V-points are calculated from the bathymetry values in the T-points. The interpolation
depends on the value which is given to vel_depth_method:

Hu
i,j =







1

2
(Hi,j +Hi+1,j) , for vel_depth_method = 0,

min {Hi,j +Hi+1,j} , for vel_depth_method = 1,

min {Hi,j +Hi+1,j} , for vel_depth_method = 2 and min{Hi,ji,Hi+1,j} < Dcrit

1

2
(Hi,j +Hi+1,j) , for vel_depth_method = 2 and min{Hi,j , Hi+1,j} ≥ Dcrit

(56)
The calculation of Hv

i,j is done accordingly.
The options 1 and 2 for vel_depth_method may help to stabilise calculations when drying and
flooding is involved. USES:

use exceptions
use domain, only: imin,imax,jmin,jmax,az,au,av,H,HU,HV
use getm_timers, only: tic,toc,TIM_UVDEPTHS
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: vel_depth_method

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j
REALTYPE :: d_crit=2.0
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6.1.10 have bdy - checks whether this node has boundaries. (Source File: have bdy.F90)

INTERFACE:

subroutine have_bdy

DESCRIPTION:

This routine which is called in domain.F90 checks whether the present node has open lateral
boundaries. The integer field bdy_index is then set accordingly. USES:

use domain
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: i,j,k,m,n
integer :: nbdy
integer :: f,l
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6.1.11 bdy spec() - defines open boundaries (Source File: bdy spec.F90)

INTERFACE:

subroutine bdy_spec(fn)

DESCRIPTION:

Read in the open boundary information from ’fn’. USES:

use exceptions
use domain, only: NWB,NNB,NEB,NSB,NOB
use domain, only: wi,wfj,wlj,nj,nfi,nli,ei,efj,elj,sj,sfi,sli
use domain, only: bdy_index,bdy_map,nsbv
use domain, only: bdy_2d_type,bdy_3d_type
use domain, only: need_2d_bdy_elev,need_2d_bdy_u,need_2d_bdy_v
IMPLICIT NONE

INPUT PARAMETERS:

character(len=*), intent(in) :: fn

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

character(len=255) :: line
integer :: iostat
integer :: i,j,k,l
integer :: n,rc
integer :: type_2d(4,10),type_3d(4,10)
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6.1.12 print bdy() - print open boundary info (Source File: print bdy.F90)

INTERFACE:

subroutine print_bdy(header)

DESCRIPTION:

Print the open boundary information. This routine is called twice - first time with the global
boundary infromation and second time with the local boundary information. In the case of a serial
run the info is identical - in the case of a parallel run the open boundary information for a each
sub-domain will be printed. USES:

use domain, only: NWB,NNB,NEB,NSB
use domain, only: wi,wfj,wlj,nj,nfi,nli,ei,efj,elj,sj,sfi,sli
use domain, only: bdy_2d_type,bdy_3d_type
use domain, only: bdy_2d_desc
IMPLICIT NONE

INPUT PARAMETERS:

character(len=*), intent(in) :: header

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: m,n
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6.1.13 mirror bdy 2d() - mirrors 2d variables (Source File: mirror bdy 2d.F90)

INTERFACE:

subroutine mirror_bdy_2d(f,tag)

DESCRIPTION:

Some variables are mirrored outside the calculation domain in the vicinity of the open boundaries.
This is to avoid if statements when calculating e.g. the Coriolis terms and advection. This routines
mirrors 2d variables. USES:

use halo_zones, only : U_TAG,V_TAG,H_TAG
use domain, only: imin,imax,jmin,jmax
use domain, only: az,au,av
use domain, only: NWB,NNB,NEB,NSB
use domain, only: wi,wfj,wlj,nj,nfi,nli,ei,efj,elj,sj,sfi,sli
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: tag

INPUT/OUTPUT PARAMETERS:

REALTYPE, intent(inout) :: f(E2DFIELD)

OUTPUT PARAMETERS:

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: i,j,n
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6.1.14 mirror bdy 3d() - mirrors 3d vaiables (Source File: mirror bdy 3d.F90)

INTERFACE:

subroutine mirror_bdy_3d(f,tag)

DESCRIPTION:

Some variables are mirrored outside the calculation domain in the vicinity of the open boundaries.
This is to avoid if statements when calculating e.g. the Coriolis terms and advection. This routines
mirrors 3d variables. USES:

use halo_zones, only : U_TAG,V_TAG,H_TAG,D_TAG
use domain, only: imin,imax,jmin,jmax,kmax
use domain, only: az,au,av
use domain, only: NWB,NNB,NEB,NSB
use domain, only: wi,wfj,wlj,nj,nfi,nli,ei,efj,elj,sj,sfi,sli
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: tag

INPUT/OUTPUT PARAMETERS:

REALTYPE, intent(inout) :: f(I3DFIELD)

OUTPUT PARAMETERS:

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: i,j,n
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7 Introduction to 2d module

In the 2D module of GETM the vertically integrated mode is calculated, which is basically the ver-
tically integrated momentum equations and the sea surface elevation equation. For the momentum
equations, interaction terms with the baroclinic three-dimentional mode need to be considered.
Those terms are here called the slow terms.

7.1 Vertically integrated mode

In order to provide the splitting of the model into an internal and an external mode, the continuity
equation and the momentum equations are vertically integrated. The vertical integral of the
continuity equation together with the kinematic boundary conditions (6) and (7) gives the sea
surface elevation equation:

∂tζ = −∂xU − ∂yV. (57)

with

U =

∫ ζ

−H

u dz, V =

∫ ζ

−H

v dz. (58)

Integrating the momentum equations (1) and (2) vertically results in:

∂tU + τxb + α

(∫ ζ

−H

(
∂xu

2 + ∂y(uv)
)
dz

−τxs −
∫ ζ

−H

(
∂x
(
2AM

h ∂xu
)
− ∂y

(
AM

h (∂yu+ ∂xv)
) )

dz

−fV −
∫ ζ

−H

∫ ζ

z

∂xb dz
′ dz

)

= −gD∂xζ

(59)

and

∂tV + τyb + α

(∫ ζ

−H

(
∂x(uv) + ∂yv

2
)
) dz

−τys −
∫ ζ

−H

(
∂y
(
2AM

h ∂yv
)
− ∂x

(
AM

h (∂yu+ ∂xv)
) )

dz

+fU −
∫ ζ

−H

∫ ζ

z

∂yb dz
′ dz

)

= −gD∂yζ.

(60)

Here, τxb and τyb are bottom stresses. Their calculation is discussed in section 8.13.9. As a first
preparation for the mode splitting, these integrals of the momentum equations can be formally
rewritten as
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∂tU +
R

D2
U
√

U2 + V 2 + Sx
F + α

(

∂x

(
U2

D

)

+ ∂y

(
UV

D

)

−τxs − ∂x

(

2AM
h D∂x

(
U

D

))

− ∂y

(

AM
h D

(

∂y

(
U

D

)

+ ∂x

(
V

D

)))

−fV + Sx
A − Sx

D + Sx
B

)

= −gD∂xζ

(61)

and

∂tV +
R

D2
V
√

U2 + V 2 + Sy
F + α

(

∂x
UV

D
+ ∂y

V 2

D

−τys − ∂x

(

AM
h D

(

∂y

(
U

D

)

+ ∂x

(
V

D

)))

− ∂y

(

2AM
h D∂y

(
V

D

))

+fU + Sy
A − Sy

D + Sy
B

)

= −gD∂yζ

(62)

with the so-called slow terms for bottom friction

Sx
F = τxb − R

D2
U
√

U2 + V 2, (63)

Sy
F = τyb − R

D2
V
√

U2 + V 2, (64)

horizontal advection

Sx
A =

∫ ζ

−H

(
∂xu

2 + ∂y(uv)
)
dz − ∂x

(
U2

D

)

− ∂y

(
UV

D

)

, (65)

Sy
A =

∫ ζ

−H

(
∂x(uv) + ∂yv

2
)
dz − ∂x

(
UV

D

)

− ∂y
(
fracV 2D

)
, (66)

horizontal diffusion

Sx
D =

∫ ζ

−H

(
∂x
(
2AM

h ∂xu
)
− ∂y

(
AM

h (∂yu+ ∂xv)
) )

dz

−∂x

(

2AM
h D∂x

(
U

D
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− ∂y

(

AM
h D

(

∂y

(
U

D

)
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(
V

D
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,

(67)

Sy
D =

∫ ζ

−H

(
∂y
(
2AM

h ∂yv
)
− ∂x

(
AM

h (∂yu+ ∂xv)
) )

dz

−∂y

(

2AM
h D∂y

(
V

D

))

− ∂x

(

AM
h D

(

∂y

(
U

D

)

+ ∂x

(
V

D

)))

,

(68)

and internal pressure gradients

Sx
B = −

∫ ζ

−H

∫ ζ

z

∂xb dz
′ dz (69)
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and

Sy
B = −

∫ ζ

−H

∫ ζ

z

∂yb dz
′ dz. (70)

The drag coefficient R for the external mode is calculated as (this logarithmic dependence of the
bottom drag from the water depth and the bottom roughness parameter z0b is discussed in detail
by Burchard and Bolding (2002)):

R =




κ

ln
(

D
2
+zb

0

zb
0

)





2

. (71)

It should be noted that for numerical reasons, an additional explicit damping has been implemented
into GETM. This method is based on diffusion of horizontal transports and is described in section
7.4.14 on page 83.
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7.2 Fortran: Module Interface m2d - depth integrated hydrodynamical
model (2D) (Source File: m2d.F90)

INTERFACE:

module m2d

DESCRIPTION:

This module contains declarations for all variables related to 2D hydrodynamical calculations.
Information about the calculation domain is included from the domain module. The module
contains public subroutines for initialisation, integration and clean up of the 2D model component.
The actual calculation routines are called in integrate_2d and are linked in from the library
lib2d.a. USES:

use exceptions
use time, only: julianday,secondsofday
use parameters, only: avmmol
use domain, only: imin,imax,jmin,jmax,az,au,av,H,min_depth
use domain, only: ilg,ihg,jlg,jhg
use domain, only: ill,ihl,jll,jhl
use domain, only: openbdy,have_boundaries,z0_method,z0_const,z0
use domain, only: check_cfl
use domain, only: az,ax

KB use get_field, only: get_2d_field
use advection, only: init_advection,print_adv_settings,NOADV
use halo_zones, only: update_2d_halo,wait_halo,H_TAG
use variables_2d

IMPLICIT NONE

interface

subroutine uv_advect(U,V,DU,DV)
use domain, only: imin,imax,jmin,jmax
IMPLICIT NONE
REALTYPE,dimension(E2DFIELD),intent(in) :: U,V
REALTYPE,dimension(E2DFIELD),target,intent(in) :: DU,DV

end subroutine uv_advect

subroutine uv_diffusion(An_method,U,V,D,DU,DV)
use domain, only: imin,imax,jmin,jmax
IMPLICIT NONE
integer,intent(in) :: An_method
REALTYPE,dimension(E2DFIELD),intent(in) :: U,V,D,DU,DV

end subroutine uv_diffusion

subroutine uv_diff_2dh(An_method,UEx,VEx,U,V,D,DU,DV,hsd_u,hsd_v)
use domain, only: imin,imax,jmin,jmax
IMPLICIT NONE
integer,intent(in) :: An_method
REALTYPE,dimension(E2DFIELD),intent(in),optional :: U,V,D,DU,DV
REALTYPE,dimension(E2DFIELD),intent(inout) :: UEx,VEx
REALTYPE,dimension(E2DFIELD),intent(out),optional :: hsd_u,hsd_v

end subroutine uv_diff_2dh
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Temporary interface (should be read from module):
subroutine get_2d_field(fn,varname,il,ih,jl,jh,break_on_missing,f)

character(len=*),intent(in) :: fn,varname
integer, intent(in) :: il,ih,jl,jh
logical, intent(in) :: break_on_missing
REALTYPE, intent(out) :: f(:,:)

end subroutine get_2d_field
end interface

PUBLIC DATA MEMBERS:

REALTYPE :: dtm
integer :: vel2d_adv_split=0
integer :: vel2d_adv_hor=1
REALTYPE :: Am=-_ONE_
method for specifying horizontal numerical diffusion coefficient

(0=const, 1=from named nc-file)
integer :: An_method=0
REALTYPE :: An_const=-_ONE_
character(LEN = PATH_MAX) :: An_file

integer :: MM=1,residual=-1
integer :: sealevel_check=0
logical :: bdy2d=.false.
integer :: bdyfmt_2d,bdytype,bdy2d_ramp=-1
character(len=PATH_MAX) :: bdyfile_2d
REAL_4B :: bdy_data(1500)
REAL_4B :: bdy_data_u(1500)
REAL_4B :: bdy_data_v(1500)
REAL_4B, allocatable :: bdy_times(:)

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: num_neighbors
REALTYPE :: An_sum
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7.2.1 init 2d - initialise 2D related stuff.

INTERFACE:

subroutine init_2d(runtype,timestep,hotstart)
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: runtype
REALTYPE, intent(in) :: timestep
logical, intent(in) :: hotstart

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

DESCRIPTION:

Here, the m2d namelist is read from getm.inp, and the check for the fulfilment of the CFL criterium
for shallow water theory cfl_check is called. A major part of this subroutine deals then with the
setting of local bathymetry values and initial surface elevations in u- and v-points, also by calls to
the subroutines uv_depths and depth_update. LOCAL VARIABLES:

integer :: rc
integer :: i,j
integer :: elev_method=1
REALTYPE :: elev_const=_ZERO_
character(LEN = PATH_MAX) :: elev_file=’elev.nc’
namelist /m2d/ &

elev_method,elev_const,elev_file, &
MM,vel2d_adv_split,vel2d_adv_hor, &
Am,An_method,An_const,An_file,residual, &
sealevel_check,bdy2d,bdyfmt_2d,bdy2d_ramp,bdyfile_2d
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7.2.2 postinit 2d - re-initialise some 2D after hotstart read.

INTERFACE:

subroutine postinit_2d(runtype,timestep,hotstart)
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: runtype
REALTYPE, intent(in) :: timestep
logical, intent(in) :: hotstart

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

DESCRIPTION:

This routine provides possibility to reset/initialize 2D variables to ensure that velocities are cor-
rectly set on land cells after read of a hotstart file. LOCAL VARIABLES:

integer :: i,j, ischange
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7.2.3 integrate 2d - sequence of calls to do 2D model integration

INTERFACE:

subroutine integrate_2d(runtype,loop,tausx,tausy,airp)
use getm_timers, only: tic, toc, TIM_INTEGR2D
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: runtype,loop
REALTYPE, intent(in) :: tausx(E2DFIELD)
REALTYPE, intent(in) :: tausy(E2DFIELD)
REALTYPE, intent(in) :: airp(E2DFIELD)

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

DESCRIPTION:

Here, all 2D related subroutines are called. The major calls and their meaning are:

call update_2d_bdy read in new lateral boundary conditions
call bottom_friction update bottom friction
call uv_advect calculate 2D advection terms
call uv_diffusion calculate 2D diffusion terms
call momentum iterate 2D momemtum equations
call sealevel update sea surface elevation
call depth_update update water depths
call do_residual calculate intermdediate values for residual currents

It should be noted that some of these calls may be excluded for certain compiler options set in the
Makefile of the application. LOCAL VARIABLES:
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7.2.4 clean 2d - cleanup after 2D run.

INTERFACE:

subroutine clean_2d()
IMPLICIT NONE

INPUT PARAMETERS:

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

DESCRIPTION:

This routine executes a final call to do_residual where the residual current calculations are fin-
ished. LOCAL VARIABLES:
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7.3 Fortran: Module Interface variables 2d - global variables for 2D
model (Source File: variables 2d.F90)

INTERFACE:

module variables_2d

DESCRIPTION:

This modules contains declarations for all variables related to 2D hydrodynamical calculations.
Information about the calculation domain is included from the domain module. The module
contains public subroutines to initialise and cleanup. Depending whether the compiler option
STATIC is set or not, memory for 2D variables is statically or dynamically allocated, see PUBLIC
DATA MEMBERS. USES:

use domain, only: imin,imax,jmin,jmax
use field_manager
IMPLICIT NONE

PUBLIC DATA MEMBERS:

integer, parameter :: rk = kind(_ONE_)
#ifdef STATIC
#include "static_2d.h"
#else
#include "dynamic_declarations_2d.h"
#endif

integer :: size2d_field
integer :: mem2d

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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7.3.1 init variables 2d - initialise 2D related stuff.

INTERFACE:

subroutine init_variables_2d(runtype)
IMPLICIT NONE

DESCRIPTION:

Allocates memory (unless STATIC is set) for 2D related fields, by an include statement. Furthermore
all public 2D variables are initialised to zero. Those are listed in table 1 on page 61.

z sea surface elevation in T-point [m]
U x component of transport in U-point [m2s−1]
DU water depth in U-point [m]
fU Coriolis term for V -equation in V-point [m2s−2]
SlUx slow term for U -equation in U-point [m2s−2]
Slru slow bottom friction for U -equation in U-point [m2s−2]
V y component of transport in V-point [m2s−1]
DV water depth in V-point [m]
fV Coriolis term for U -equation in U-point [m2s−2]
SlVx slow term for V -equation in V-point [m2s−2]
Slrv slow bottom friction for V -equation in V-point [m2s−2]
Uint x-component of mean transport in U-point [m2s−1]
Vint y-component of mean transport in V-point [m2s−1]
UEx sum of explicit terms for for U -equation in U-point [m2s−2]
VEx sum of explicit terms for for V -equation in V-point [m2s−2]
ru bottom friction for U -equation in U-point [m2s−2]
rv bottom friction for V -equation in V-point [m2s−2]
res_du residual depth in U-point [m]
res_u x-component of residual transport in U-point [m2s−1]
res_dv residual depth in V-point [m]
res_v y-component of residual transport in V-point [m2s−1]

Table 1: Public 2D variables.

INPUT PARAMETERS:

integer, intent(in) :: runtype

LOCAL VARIABLES:

integer :: rc
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7.3.2 register 2d variables() - register GETM variables. (Source File: variables 2d.F90)

INTERFACE:

subroutine register_2d_variables(fm)

DESCRIPTION:

USES:

use variables_2d
IMPLICIT NONE

INPUT PARAMETERS:

type (type_field_manager) :: fm

REVISION HISTORY:

Original author(s): Karsten Bolding & Jorn Bruggeman

LOCAL VARIABLES:

logical :: used
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7.3.3 clean variables 2d - cleanup after 2D run.

INTERFACE:

subroutine clean_variables_2d()
IMPLICIT NONE

DESCRIPTION:

This routine is currently empty. LOCAL VARIABLES:
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7.4 Fortran: Module Interface 2D advection (Source File: advection.F90)

INTERFACE:

module advection

DESCRIPTION:

This module does lateral advection of scalars. It follows the same convention as the other modules
in ’getm’. The module is initialised by calling ’init advection()’. In the time-loop ’do advection()’
is called. ’do advection’ is a wrapper routine which - dependent on the actual advection scheme
chosen - makes calls to the appropriate subroutines, which may be done as one-step or multiple-step
schemes. The actual subroutines are coded in external FORTRAN files. New advection schemes
are easily implemented - at least from a program point of view - since only this module needs to
be changed. Additional work arrays can easily be added following the stencil given below. To add
a new advection scheme three things must be done:

1. define a unique constant to identify the scheme (see e.g. UPSTREAM and TVD)

2. adopt the select case in do_advection and

3. write the actual subroutine.

USES:

use domain, only: imin,imax,jmin,jmax
IMPLICIT NONE

private

PUBLIC DATA MEMBERS:

public init_advection,do_advection,print_adv_settings
public adv_split_u,adv_split_v,adv_upstream_2dh,adv_arakawa_j7_2dh,adv_fct_2dh
public adv_interfacial_reconstruction

type, public :: t_adv_grid
logical,dimension(:,:),pointer,contiguous :: mask_uflux,mask_vflux,mask_xflux
logical,dimension(:,:),pointer,contiguous :: mask_uupdate,mask_vupdate
logical,dimension(:,:),pointer,contiguous :: mask_finalise
integer,dimension(:,:),pointer,contiguous :: az

#if defined(SPHERICAL) || defined(CURVILINEAR)
REALTYPE,dimension(:,:),pointer,contiguous :: dxu,dyu,dxv,dyv,arcd1

#endif
end type t_adv_grid

type(t_adv_grid),public,target :: adv_gridH,adv_gridU,adv_gridV

integer,public,parameter :: NOSPLIT=0,FULLSPLIT=1,HALFSPLIT=2
character(len=64),public,parameter :: adv_splits(0:2) = &

(/"no split: one 2D uv step ", &
"full step splitting: u + v ", &
"half step splitting: u/2 + v + u/2"/)

integer,public,parameter :: NOADV=0,UPSTREAM=1,UPSTREAM_2DH=2
integer,public,parameter :: P2=3,SUPERBEE=4,MUSCL=5,P2_PDM=6
integer,public,parameter :: J7=7,FCT=8,P2_2DH=9
character(len=64),public,parameter :: adv_schemes(0:9) = &

64



(/"advection disabled ", &
"upstream advection (first-order, monotone) ", &
"2DH-upstream advection with forced monotonicity", &
"P2 advection (third-order, non-monotone) ", &
"TVD-Superbee advection (second-order, monotone)", &
"TVD-MUSCL advection (second-order, monotone) ", &
"TVD-P2-PDM advection (third-order, monotone) ", &
"2DH-J7 advection (Arakawa and Lamb, 1977) ", &
"2DH-FCT advection ", &
"2DH-P2 advection "/)

LOCAL VARIABLES:

#ifdef STATIC
logical,dimension(E2DFIELD),target :: mask_updateH
logical,dimension(E2DFIELD),target :: mask_uflux,mask_vflux,mask_xflux
logical,dimension(E2DFIELD),target :: mask_uupdateU,mask_vupdateV

#else
logical,dimension(:,:),allocatable,target :: mask_updateH
logical,dimension(:,:),allocatable,target :: mask_uflux,mask_vflux,mask_xflux
logical,dimension(:,:),allocatable,target :: mask_uupdateU,mask_vupdateV

#endif

REVISION HISTORY:

Original author(s): Knut Klingbeil
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7.4.1 init advection

INTERFACE:

subroutine init_advection()

DESCRIPTION:

Allocates memory and sets up masks and lateral grid increments. USES:

use domain, only: az,au,av,ax
#if defined(SPHERICAL) || defined(CURVILINEAR)

use domain, only: dxc,dyc,arcd1,dxu,dyu,arud1,dxv,dyv,arvd1,dxx,dyx
#endif

IMPLICIT NONE

LOCAL VARIABLES:

integer :: rc

66



7.4.2 do advection - 2D advection schemes

INTERFACE:

subroutine do_advection(dt,f,U,V,DU,DV,Do,Dn,split,scheme,AH,tag, &
Dires,advres)

DESCRIPTION:

Laterally advects a 2D quantity. The location of the quantity on the grid (either T-, U- or V-points)
must be specified by the argument tag. The transports through the interfaces of the corresponding
Finite-Volumes and their different height information (all relative to the given quantity) must be
provided as well. Depending on split and scheme several fractional steps (Strang splitting) with
different options for the calculation of the interfacial fluxes are carried out.
The options for split are:

split = NOSPLIT: no split (one 2D uv step)
split = FULLSPLIT: full step splitting (u + v)
split = HALFSPLIT: half step splitting (u/2 + v + u/2)

The options for scheme are:

scheme = NOADV: advection disabled
scheme = UPSTREAM: first-order upstream (monotone)
scheme = UPSTREAM_2DH: 2DH upstream with forced monotonicity
scheme = P2: third-order polynomial (non-monotone)
scheme = SUPERBEE: second-order TVD (monotone)
scheme = MUSCL: second-order TVD (monotone)
scheme = P2_PDM: third-order ULTIMATE-QUICKEST (monotone)
scheme = J7: 2DH Arakawa J7
scheme = FCT: 2DH FCT with forced monotonicity
scheme = P2_2DH: 2DH P2 with forced monotonicity

With the compiler option SLICE_MODEL, the advection in meridional direction is not executed.
USES:

use halo_zones, only: update_2d_halo,wait_halo,D_TAG,H_TAG,U_TAG,V_TAG
use getm_timers, only: tic,toc,TIM_ADV,TIM_ADVH
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE,intent(in) :: dt,AH
REALTYPE,dimension(E2DFIELD),intent(in) :: U,V,Do,Dn,DU,DV
integer,intent(in) :: split,scheme,tag

INPUT/OUTPUT PARAMETERS:

REALTYPE,dimension(E2DFIELD),intent(inout) :: f

OUTPUT PARAMETERS:

REALTYPE,dimension(E2DFIELD),target,intent(out),optional :: Dires,advres

LOCAL VARIABLES:
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type(t_adv_grid),pointer :: adv_grid
REALTYPE,dimension(E2DFIELD),target :: fi,Di,adv
REALTYPE,dimension(:,:),pointer,contiguous :: p_Di,p_adv
integer :: i,j
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7.4.3 print adv settings

INTERFACE:

subroutine print_adv_settings(split,scheme,AH)

DESCRIPTION:

Checks and prints out settings for 2D advection. USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer,intent(in) :: split,scheme
REALTYPE,intent(in) :: AH

LOCAL VARIABLES:
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7.4.4 adv interfacial reconstruction -

INTERFACE:

REALTYPE function adv_interfacial_reconstruction(scheme,cfl,fuu,fu,fd)

DESCRIPTION:

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer,intent(in) :: scheme
REALTYPE,intent(in) :: cfl,fuu,fu,fd

LOCAL VARIABLES:

REALTYPE :: ratio,limiter,x,deltaf,deltafu
REALTYPE,parameter :: one6th=_ONE_/6

REVISION HISTORY:

Original author(s): Knut Klingbeil
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7.4.5 adv interfacial reconstruction p2 -

INTERFACE:

REALTYPE function adv_interfacial_reconstruction_p2(cfl,fu,deltafu,deltaf)

DESCRIPTION:

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE,intent(in) :: cfl,fu,deltafu,deltaf

LOCAL VARIABLES:

REALTYPE :: x
REALTYPE,parameter :: one6th=_ONE_/6

REVISION HISTORY:

Original author(s): Knut Klingbeil
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7.4.6 test pointer remap -

INTERFACE:

logical function test_pointer_remap()

DESCRIPTION:

Tests the support of pointer remapping. USES:

IMPLICIT NONE

LOCAL VARIABLES:

REALTYPE,dimension(3,2),target :: t2d
REALTYPE,dimension(:,:),pointer :: p2d

72



7.4.7 adv split u - zonal advection of 2D quantities

INTERFACE:

subroutine adv_split_u(dt,f,fi,Di,adv,U,DU, &
#if defined(SPHERICAL) || defined(CURVILINEAR)

dxu,dyu,arcd1, &
#endif

splitfac,scheme,AH, &
mask_flux,mask_update)

Note (KK): Keep in sync with interface in advection.F90

DESCRIPTION:

Executes an advection step in zonal direction for a 2D quantity. The 1D advection equation

Dn
i,jc

n
i,j = Do

i,jc
o
i,j −∆t

Ui,j c̃
u
i,j∆yui,j − Ui−1,j c̃

u
i−1,j∆yui−1,j

∆xc
i,j∆yci,j

, (72)

is accompanied by an fractional step for the 1D continuity equation

Dn
i,j = Do

i,j −∆t
Ui,j∆yui,j − Ui−1,j∆yui−1,j

∆xc
i,j∆yci,j

. (73)

Here, n and o denote values before and after this operation, respectively, n denote intermediate
values when other 1D advection steps come after this and o denotes intermediate values when other
1D advection steps came before this. Furthermore, when this u-directional split step is repeated
during the total time step (Strang splitting), the time step ∆t denotes a fraction of the full time
step.
The interfacial fluxes c̃ui,j are calculated according to the third-order polynomial scheme (so-called
P2 scheme), cast in Lax-Wendroff form by:

c̃i,j =







(
ci,j +

1
2 c̃

+
i,j(1− |Ci,j |)(ci+1,j − ci,j)

)
for Ui,j ≥ 0,

(
ci+1,j +

1
2 c̃

−
i,j(1− |Ci,j |)(ci,j − ci+1,j)

)
else,

(74)

with the Courant number Ci,j = ui,j∆t/∆x and

c̃+i,j = αi,j + βi,jr
+
i,j , c̃−i,j = αi,j + βi,jr

−
i,j , (75)

where

αi,j =
1

2
+

1

6
(1− 2|Ci,j |), βi,j =

1

2
− 1

6
(1− 2|Ci,j |), (76)

and

r+i,j =
ci,j − ci−1,j

ci+1,j − ci,j
, r−i,j =

ci+2,j − ci+1,j

ci+1,j − ci,j
. (77)

It should be noted, that for c̃+i,j = c̃−i,j = 1 the original Lax-Wendroff scheme and for c̃+i,j = c̃−i,j = 0
the first-oder upstream scheme can be recovered.
In order to obtain a monotonic and positive scheme, the factors c̃+i,j are limited in the following
way:

c̃+i,j → max

[

0,min

(

c̃+i,j ,
2

1− |Ci,j |
,
2r+i,j
|Ci,j |

)]

, (78)
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and, equivalently, for c̃−i,j . This so-called PDM-limiter has been described in detail by Leonard

(1991), who named the PDM-limited P2 scheme also ULTIMATE QUICKEST (quadratic upstream
interpolation for convective kinematics with estimated stream terms).
Some simpler limiters which do not exploit the third-order polynomial properties of the discreti-
sation (74) have been listed by Zalezak (1987). Among those are the MUSCL scheme by van Leer
(1979),

c̃+i,j → max

[

0,min

(

2, 2r+i,j ,
1 + r+i,j

2

)]

, (79)

and the Superbee scheme by Roe (1985),

c̃+i,j → max
[
0,min(1, 2r+i,j),min(r+i,j , 2)

]
. (80)

The selector for the schemes is scheme:

scheme = UPSTREAM: first-order upstream (monotone)
scheme = P2: third-order polynomial (non-monotone)
scheme = SUPERBEE: second-order TVD (monotone)
scheme = MUSCL: second-order TVD (monotone)
scheme = P2_PDM: third-order ULTIMATE-QUICKEST (monotone)

Furthermore, the horizontal diffusion in zonal direction with the constant diffusion coefficient AH
is carried out here by means of a central difference second-order scheme. USES:

use domain, only: imin,imax,jmin,jmax
#if !( defined(SPHERICAL) || defined(CURVILINEAR) )

use domain, only: dx,dy,ard1
#endif

use advection, only: adv_interfacial_reconstruction
use advection, only: UPSTREAM

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

Note (KK): in general dxu, dyu and mask_flux do only have valid data
within (_IRANGE_HALO_-1,_JRANGE_HALO_). In some cases the
original field extension may even be _IRANGE_HALO_. Then
explicit declared array bounds _IRANGE_HALO_-1 require a
provision of the corresponding subarray and will cause
copying of the non-contiguously data into a temporarily
array. Therefore they are declared as pointers here. This
however requires, that the provided pointers already carry
the correct bounds.

REALTYPE,intent(in) :: dt,splitfac,AH
REALTYPE,dimension(E2DFIELD),intent(in) :: f,U,DU

#if defined(SPHERICAL) || defined(CURVILINEAR)
REALTYPE,dimension(:,:),pointer,contiguous,intent(in) :: dxu,dyu
REALTYPE,dimension(E2DFIELD),intent(in) :: arcd1

#endif
integer,intent(in) :: scheme
logical,dimension(:,:),pointer,contiguous,intent(in) :: mask_flux
logical,dimension(E2DFIELD),intent(in) :: mask_update
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INPUT/OUTPUT PARAMETERS:

REALTYPE,dimension(E2DFIELD),intent(inout) :: fi,Di,adv

LOCAL VARIABLES:

REALTYPE,dimension(E2DFIELD) :: uflux
logical :: use_limiter,use_AH
integer :: i,j,isub
REALTYPE :: dti,Dio,advn,cfl,fuu,fu,fd

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
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7.4.8 adv split v - meridional advection of 2D quantities

INTERFACE:

subroutine adv_split_v(dt,f,fi,Di,adv,V,DV, &
#if defined(SPHERICAL) || defined(CURVILINEAR)

dxv,dyv,arcd1, &
#endif

splitfac,scheme,AH, &
mask_flux,mask_update)

Note (KK): Keep in sync with interface in advection.F90

DESCRIPTION:

Executes an advection step in meridional direction for a 2D quantity in analogy to routine adv_u_split
(see section 7.4.7 on page 73). USES:

use domain, only: imin,imax,jmin,jmax
#if !( defined(SPHERICAL) || defined(CURVILINEAR) )

use domain, only: dx,dy,ard1
#endif

use advection, only: adv_interfacial_reconstruction
use advection, only: UPSTREAM

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE,intent(in) :: dt,splitfac,AH
REALTYPE,dimension(E2DFIELD),intent(in) :: f,V,DV

#if defined(SPHERICAL) || defined(CURVILINEAR)
REALTYPE,dimension(_IRANGE_HALO_,_JRANGE_HALO_-1),intent(in) :: dxv,dyv
REALTYPE,dimension(E2DFIELD),intent(in) :: arcd1

#endif
integer,intent(in) :: scheme
logical,dimension(_IRANGE_HALO_,_JRANGE_HALO_-1),intent(in) :: mask_flux
logical,dimension(E2DFIELD),intent(in) :: mask_update

INPUT/OUTPUT PARAMETERS:

REALTYPE,dimension(E2DFIELD),intent(inout) :: fi,Di,adv

LOCAL VARIABLES:

REALTYPE,dimension(E2DFIELD) :: vflux
logical :: use_limiter,use_AH
integer :: i,j,jsub
REALTYPE :: dti,Dio,advn,cfl,fuu,fu,fd

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
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7.4.9 adv arakawa j7 2dh - 2DH Arakawa J7 advection of 2D quantities

INTERFACE:

subroutine adv_arakawa_j7_2dh(dt,f,fi,Di,adv,vfU,vfV,Dn,DU,DV, &
#if defined(SPHERICAL) || defined(CURVILINEAR)

dxv,dyu,dxu,dyv,arcd1, &
#endif

AH,az, &
mask_uflux,mask_vflux,mask_xflux)

Note (KK): Keep in sync with interface in advection.F90

DESCRIPTION:

USES:

use domain, only: imin,imax,jmin,jmax
#if !( defined(SPHERICAL) || defined(CURVILINEAR) )

use domain, only: dx,dy,ard1
#endif
$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE,intent(in) :: dt,AH
REALTYPE,dimension(E2DFIELD),target,intent(in) :: f
REALTYPE,dimension(E2DFIELD),intent(in) :: vfU,vfV,Dn,DU,DV

#if defined(SPHERICAL) || defined(CURVILINEAR)
REALTYPE,dimension(:,:),pointer,contiguous,intent(in) :: dxu,dyu
REALTYPE,dimension(_IRANGE_HALO_,_JRANGE_HALO_-1),intent(in) :: dxv,dyv
REALTYPE,dimension(E2DFIELD),intent(in) :: arcd1

#endif
integer,dimension(E2DFIELD),intent(in) :: az
logical,dimension(:,:),pointer,contiguous,intent(in) :: mask_uflux,mask_xflux
logical,dimension(_IRANGE_HALO_,_JRANGE_HALO_-1),intent(in) :: mask_vflux

INPUT/OUTPUT PARAMETERS:

REALTYPE,dimension(E2DFIELD),target,intent(inout) :: fi,Di,adv

LOCAL VARIABLES:

logical :: use_AH
integer :: i,j,matsuno_it
REALTYPE :: Dio,advn
REALTYPE,dimension(:,:),pointer,contiguous :: faux,p_fiaux,p_Diaux,p_advaux
REALTYPE,dimension(E2DFIELD) :: flux_e,flux_n,flux_ne,flux_nw
REALTYPE,dimension(E2DFIELD) :: f_e,f_n,f_ne,f_nw
REALTYPE,dimension(E2DFIELD),target :: fiaux,Diaux,advaux
REALTYPE,dimension(E2DFIELD) :: uflux,vflux
REALTYPE,parameter :: one3rd = _ONE_/_THREE_
REALTYPE,parameter :: one6th = one3rd/_TWO_

REVISION HISTORY:

Original author(s): Knut Klingbeil

77



7.4.10 adv upstream 2dh - 2DH upstream advection of 2D quantities

INTERFACE:

subroutine adv_upstream_2dh(dt,f,fi,Di,adv,U,V,Dn,DU,DV, &
#if defined(SPHERICAL) || defined(CURVILINEAR)

dxv,dyu,dxu,dyv,arcd1, &
#endif

AH,az)
Note (KK): Keep in sync with interface in advection.F90

DESCRIPTION:

In this routine, the first-order upstream advection scheme is applied for the two horizontal directions
in one step. The scheme should be positive definite and of high resolution. In order to remove trun-
cation errors which might in Wadden Sea applications cause non-monotonicity, a truncation of over-
and undershoots is carried out at the end of this subroutine. Such two-dimensional schemes are
advantageous in Wadden Sea applications, since one-dimensional directional-split schemes might
compute negative intermediate depths. USES:

use domain, only: imin,imax,jmin,jmax
#if !( defined(SPHERICAL) || defined(CURVILINEAR) )

use domain, only: dx,dy,ard1
#endif
$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE,intent(in) :: dt,AH
REALTYPE,dimension(E2DFIELD),intent(in) :: f,U,V,Dn,DU,DV

#if defined(SPHERICAL) || defined(CURVILINEAR)
REALTYPE,dimension(:,:),pointer,contiguous,intent(in) :: dxu,dyu
REALTYPE,dimension(_IRANGE_HALO_,_JRANGE_HALO_-1),intent(in) :: dxv,dyv
REALTYPE,dimension(E2DFIELD),intent(in) :: arcd1

#endif
integer,dimension(E2DFIELD),intent(in) :: az

INPUT/OUTPUT PARAMETERS:

REALTYPE,dimension(E2DFIELD),intent(inout) :: fi,Di,adv

LOCAL VARIABLES:

integer :: i,j,ii,jj
REALTYPE :: Dio,advn
REALTYPE,dimension(E2DFIELD) :: uflux,vflux
REALTYPE,dimension(E2DFIELD) :: cmin,cmax

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
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7.4.11 adv fct 2dh - 2DH FCT advection of 2D quantities

INTERFACE:

subroutine adv_fct_2dh(fct,dt,f,fi,Di,adv,U,V,Dn,DU,DV, &
#if defined(SPHERICAL) || defined(CURVILINEAR)

dxv,dyu,dxu,dyv,arcd1, &
#endif

AH,az, &
mask_uflux,mask_vflux)

Note (KK): keep in sync with interface in advection.F90

DESCRIPTION:

In this routine, the flux corrected transport advection scheme by Zalezak (1979) is applied for the
two horizontal directions in one step. For details of this type of operator splitting, see section
7.4.10 on page 78).
The monotone low-order flux is the first-order upstream scheme, the high-order flux is the third-
order ULTIMATE QUICKEST scheme by Leonard et al. (1995). The scheme should thus be
positive definite and of high resolution. In order to remove truncation errors which might in
Wadden Sea applications cause non-monotonicity, a truncation of over- and undershoots is carried
out at the end of this subroutine. Such two-dimensional schemes are advantageous in Wadden Sea
applications, since one-dimensional directioal-split schemes might compute negative intermediate
solutions. Extra checks for boundaries including mirroring out of the transported quantities are
performed in order to account for the third-order large stencils.
If GETM is executed as slice model (compiler option SLICE_MODEL) the advection step for the y
direction is not executed. USES:

use domain, only: imin,imax,jmin,jmax
#if !( defined(SPHERICAL) || defined(CURVILINEAR) )

use domain, only: dx,dy,ard1
#endif

use halo_zones, only : update_2d_halo,wait_halo,z_TAG
$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

logical,intent(in) :: fct
REALTYPE,intent(in) :: dt,AH
REALTYPE,dimension(E2DFIELD),intent(in) :: f,U,V,Dn,DU,DV

#if defined(SPHERICAL) || defined(CURVILINEAR)
REALTYPE,dimension(:,:),pointer,contiguous,intent(in) :: dxu,dyu
REALTYPE,dimension(_IRANGE_HALO_,_JRANGE_HALO_-1),intent(in) :: dxv,dyv
REALTYPE,dimension(E2DFIELD),intent(in) :: arcd1

#endif
integer,dimension(E2DFIELD),intent(in) :: az
logical,dimension(:,:),pointer,contiguous,intent(in) :: mask_uflux
logical,dimension(_IRANGE_HALO_,_JRANGE_HALO_-1),intent(in) :: mask_vflux

INPUT/OUTPUT PARAMETERS:

REALTYPE,dimension(E2DFIELD),intent(inout) :: fi,Di,adv

LOCAL VARIABLES:

integer :: i,j
REALTYPE,dimension(E2DFIELD) :: Dio
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REALTYPE,dimension(E2DFIELD) :: uflux,flx
#ifndef SLICE_MODEL

REALTYPE,dimension(E2DFIELD) :: vflux,fly
#endif

REALTYPE,dimension(E2DFIELD) :: faux,rp,rm,cmin,cmax
REALTYPE :: CNW,CW,CSW,CSSW,CWW,CSWW,CC,CS
REALTYPE :: advn,uuu,vvv,CExx,Cl,Cu,fac
REALTYPE,parameter :: one12th=_ONE_/12,one6th=_ONE_/6,one3rd=_ONE_/3

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
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7.4.12 bottom friction - calculates the 2D bottom friction. (Source File: bottom friction.F90)

INTERFACE:

subroutine bottom_friction(runtype)

DESCRIPTION:

In this routine the bottom friction for the external (vertically integrated) mode is calculated. This
is done separately for the U -equation in the U-points and for the V -equation in the V-points. The
drag coefficient R for the external mode is given in eq. (71) on page 53. For runtype=1 (only
vertically integrated calculations), the bottom roughness length is depending on the bed friction
velocity ub

∗ and the molecular viscosity ν:

zb0 = 0.1
ν

ub
∗

+
(
zb0
)

min
, (81)

see e.g. Kagan (1995), i.e. the given roughness may be increased by viscous effects. After this,
the drag coefficient is multiplied by the absolute value of the local velocity, which is alculated by
dividing the local transports by the local water depths and by properly interpolating these velocities
to the U- and V-points. The resulting fields are ru, representing R

√
u2 + v2 on the U-points and

rv, representing this quantity on the V-points. USES:

use parameters, only: kappa,avmmol
use domain, only: imin,imax,jmin,jmax,au,av,min_depth
use variables_2d
use getm_timers, only: tic, toc, TIM_BOTTFRICT

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: runtype

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: i,j
REALTYPE :: uloc(E2DFIELD),vloc(E2DFIELD)
REALTYPE :: HH(E2DFIELD),fricvel(E2DFIELD)
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7.4.13 uv advect - 2D advection of momentum (Source File: uv advect.F90)

INTERFACE:

subroutine uv_advect(U,V,DU,DV)

Note (KK): keep in sync with interface in m2d.F90

DESCRIPTION:

Wrapper to prepare and do calls to do_advection (see section 7.4.2 on page 67) to calculate the
advection terms of the depth-averaged velocities. USES:

use domain, only: imin,imax,jmin,jmax,az,au,av,ax
#if defined(SPHERICAL) || defined(CURVILINEAR)

use domain, only: dxv,dyu
#else

use domain, only: dx,dy
#endif

use m2d, only: dtm,vel2d_adv_split,vel2d_adv_hor
use variables_2d, only: UEx,VEx
use advection, only: NOADV,UPSTREAM,J7,do_advection
use halo_zones, only: update_2d_halo,wait_halo,U_TAG,V_TAG
use getm_timers, only: tic,toc,TIM_UVADV,TIM_UVADVH

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE,dimension(E2DFIELD),intent(in) :: U,V
REALTYPE,dimension(E2DFIELD),target,intent(in) :: DU,DV

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j
REALTYPE,dimension(E2DFIELD) :: fadv,Uadv,Vadv,DUadv,DVadv
REALTYPE,dimension(E2DFIELD),target :: Dadv
REALTYPE,dimension(:,:),pointer,contiguous :: pDadv
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7.4.14 uv diffusion - lateral diffusion of depth-averaged velocity (Source File: uv diffusion.F90)

INTERFACE:

subroutine uv_diffusion(An_method,U,V,D,DU,DV)

Note (KK): keep in sync with interface in m2d.F90

DESCRIPTION:

This wrapper calls routine uv_diff_2dh (see section 7.4.15 on page 84). USES:

use domain, only: imin,imax,jmin,jmax
use m2d, only: uv_diff_2dh
use m2d, only: Am
use variables_2d, only: UEx,VEx
use getm_timers, only: tic,toc,TIM_UVDIFF

IMPLICIT NONE

INPUT PARAMETERS:

integer,intent(in) :: An_method
REALTYPE,dimension(E2DFIELD),intent(in) :: U,V,D,DU,DV

REVISION HISTORY:

Original author(s): Hans Burchard

LOCAL VARIABLES:
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7.4.15 uv diff 2dh - lateral diffusion of velocity

INTERFACE:

subroutine uv_diff_2dh(An_method,UEx,VEx,U,V,D,DU,DV,hsd_u,hsd_v)

Note (KK): keep in sync with interface in m2d.F90

DESCRIPTION:

Here, the diffusion terms for the vertically integrated transports are calculated by means of central
differences, following the finite volume approach. They are added to the advection terms into the
terms UEx and VEx for the U - and the V -equation, respectively. The physical diffusion with the
given eddy viscosity coefficient AM

h is based on velocity gradients, whereas an additional numerical
damping of the barotropic mode is based on gradients of the transports with the damping coefficient
AN

h , see the example given as equations (90) and (91).
First diffusion term in (61):

(

mn∂X

(

2AM
h D∂X

(
U

D

)

+AN
h ∂XU

))

i,j

≈
FDxx

i+1,j −FDxx
i,j

∆xu
i,j∆yui,j

(82)

with diffusive fluxes

FDxx
i,j =

(

2AM
h Di,j

(

Ui,j

Du
i,j

− Ui−1,j

Du
i−1,j

)

+AN
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)

∆yci,j
∆xc

i,j

. (83)

Second diffusion term in (61):
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D
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with diffusive fluxes

FDxy
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h
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First diffusion term in (62):
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with diffusive fluxes
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Second diffusion term in (62):

(

mn∂Y

(
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h D∂Y

(
V

D

)

+AN
h ∂YV

))

i,j

≈
FDyy
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(88)

with diffusive fluxes

FDyy
i,j =

(
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)
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h (Vi,j − Vi,j−1)

)

∆xc
i,j
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. (89)

The role of the additional diffusion of U and V with the diffusion coefficient AN
h is best demon-

strated by means of a simplified set of vertically integrated equations:

∂tη = −∂xU − ∂yV

∂tU = −gD∂xη +AN
h (∂xxU + ∂yyU)

∂tV = −gD∂yη +AN
h (∂xxV + ∂yyV ) ,

(90)

which can be transformed into an equation for ∂tη by derivation of the η-equation with respect
to t, of the U -equation with respect to x and the V -equation with respect to y and subsequent
elimination of U and V :

∂t (∂tη) = gD (∂xxη + ∂yyη) +AN
h (∂xx (∂tη) + ∂yy (∂tη)) , (91)

which can be interpreted as a wave equation with a damping on ∂tη. This introduces an explicit
damping of free surface elevation oscillations in a momentum-conservative manner. Hydrodynamic
models with implicit treatment of the barotropic mode do not need to apply this method due to the
implicit damping of those models, see e.g. Backhaus (1985). The implementation of this explicit
damping described here has been suggested by Jean-Marie Beckers, Liége (Belgium).
When working with the option SLICE_MODEL, the calculation of all gradients in y-direction is
suppressed. USES:

use domain, only: imin,imax,jmin,jmax,az,au,av,ax
#if defined(SPHERICAL) || defined(CURVILINEAR)

use domain, only: dyc,arud1,dxx,dyx,arvd1,dxc
#else

use domain, only: dx,dy,ard1
#endif

use m2d, only: Am
use variables_2d, only: An,AnX

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

integer,intent(in) :: An_method
REALTYPE,dimension(E2DFIELD),intent(in),optional :: U,V,D,DU,DV

INPUT/OUTPUT PARAMETERS:

REALTYPE,dimension(E2DFIELD),intent(inout) :: UEx,VEx

OUTPUT PARAMETERS:

REALTYPE,dimension(E2DFIELD),intent(out),optional :: hsd_u,hsd_v
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REVISION HISTORY:

Original author(s): Hans Burchard
Modified by : Knut Klingbeil

LOCAL VARIABLES:

REALTYPE,dimension(E2DFIELD) :: work2d
logical :: use_Am
integer :: i,j
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7.4.16 momentum - 2D-momentum for all interior points. (Source File: momen-
tum.F90)

INTERFACE:

subroutine momentum(n,tausx,tausy,airp)

DESCRIPTION:

This small routine calls the U -equation and the V -equation in an alternating sequence (UVVU-
UVVUUVVU), in order to provide higher accuracy and energy conservation for the explicit nu-
merical treatment of the Coriolis term. USES:

use domain, only: imin,imax,jmin,jmax
! For timer here: Only clock what is not taken at "next" level.
use getm_timers, only: tic, toc, TIM_MOMENTUM
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: n
REALTYPE, intent(in) :: tausx(E2DFIELD)
REALTYPE, intent(in) :: tausy(E2DFIELD)
REALTYPE, intent(in) :: airp(E2DFIELD)

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

logical :: ufirst=.false.
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7.4.17 umomentum - 2D-momentum for all interior points.

INTERFACE:

subroutine umomentum(tausx,airp)

DESCRIPTION:

Here, the vertically integrated U -momentum equation (61) given on page 52 including a number of
slow terms is calculated. One slight modification is that for better stability of drying and flooding
processes the slow friction term Sx

F is now also multiplied with the parameter α defined in eq. (5).
Furthermore, the horizontal pressure gradient ∂∗

xζ is modified in order to support drying and
flooding, see figure 10 on page 31 and the explanations in section 5.5. ∂∗

xζ is now also considering
the atmospheric pressure gradient at sea surface height.
For numerical stability reasons, the U -momentum equation is here discretised in time such that
the bed friction is treated explicitely:

Un+1 =
Un −∆tm(gD∂∗

xζ + α(− τs
x

ρ0

− fV n + UEx + Sx
A − Sx

D + Sx
B + Sx

F ))

1 + ∆tm
R
D2

√

(Un)
2
+ (V n)

2
, (92)

with UEx combining advection and diffusion of U , see routines uv_advect (section 7.4.13 on page
82) and uv_diffusion (section 7.4.14 on page 83). The slow terms are calculated in the routine
slow_terms documented in section 8.13.11 on page 177. In (92), Un+1 denotes the transport on
the new and Un and V n the transports on the old time level.
The Coriolis term fU for the subsequent V -momentum is also calculated here, by directly inter-
polating the U -transports to the V-points or by a method suggested by Espelid et al. (2000) which
takes the varying water depths into account.
Some provisions for proper behaviour of the U -transports when GETM runs as slice model are
made as well, see section 3.2 on page 15. USES:

use parameters, only: g,rho_0
use domain, only: imin,imax,jmin,jmax
use domain, only: H,au,av,min_depth,dry_u,Cori,corv

#if defined(SPHERICAL) || defined(CURVILINEAR)
use domain, only: dxu,arvd1,dxc,dyx
use variables_2d, only: V

#else
use domain, only: dx

#endif
use m2d, only: dtm
use variables_2d, only: D,z,UEx,U,DU,fV,SlUx,Slru,ru,fU,DV
use getm_timers, only: tic, toc, TIM_MOMENTUMH
use halo_zones, only : update_2d_halo,wait_halo,U_TAG

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: tausx(E2DFIELD),airp(E2DFIELD)

LOCAL VARIABLES:

integer :: i,j
REALTYPE :: zp,zm,zx,tausu,Slr,Uloc
REALTYPE :: gamma=rho_0*g
REALTYPE :: cord_curv=_ZERO_
REALTYPE :: gammai
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7.4.18 vmomentum - 2D-momentum for all interior points.

INTERFACE:

subroutine vmomentum(tausy,airp)

DESCRIPTION:

Here, the vertically integrated V -momentum equation (62) given on page 52 including a number of
slow terms is calculated. One slight modification is that for better stability of drying and flooding
processes the slow friction term Sy

F is now also multiplied with the parameter α defined in eq. (5).
Furthermore, the horizontal pressure gradient ∂∗

yζ is modified in order to support drying and
flooding, see figure 10 on page 31 and the explanations in section 5.5. ∂∗

yζ is now also considering
the atmospheric pressure gradient at sea surface height.
For numerical stability reasons, the V -momentum equation is here discretised in time such that
the bed friction is treated explicitely:

V n+1 =
V n −∆tm(gD∂∗

yζ + α(− τs
y

ρ0

+ fUn + VEx + Sy
A − Sy

D + Sy
B + Sy

F ))

1 + ∆tm
R
D2

√

(Un)
2
+ (V n)

2
, (93)

with VEx combining advection and diffusion of V , see routines uv_advect (section 7.4.13 on page
82) and uv_diffusion (section 7.4.14 on page 83). The slow terms are calculated in the routine
slow_terms documented in section 8.13.11 on page 177. In (93), V n+1 denotes the transport on
the new and Un and V n the transports on the old time level.
The Coriolis term fV for the subsequent U -momentum is also calculated here, by directly inter-
polating the U -transports to the U-points or by a method suggested by Espelid et al. (2000) which
takes the varying water depths into account.
Some provisions for proper behaviour of the V -transports when GETM runs as slice model are
made as well, see section 3.2 on page 15. USES:

use parameters, only: g,rho_0
use domain, only: imin,imax,jmin,jmax
use domain, only: H,au,av,min_depth,dry_v,Cori,coru

#if defined(SPHERICAL) || defined(CURVILINEAR)
use domain, only: dyv,arud1,dxx,dyc
use m2d, only: U

#else
use domain, only: dy

#endif
use m2d, only: dtm
use variables_2d, only: D,z,VEx,V,DV,fU,SlVx,Slrv,rv,fV,DU
use getm_timers, only: tic, toc, TIM_MOMENTUMH
use halo_zones, only : update_2d_halo,wait_halo,V_TAG
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: tausy(E2DFIELD),airp(E2DFIELD)

LOCAL VARIABLES:

integer :: i,j
REALTYPE :: zp,zm,zy,tausv,Slr,Vloc
REALTYPE :: gamma=rho_0*g
REALTYPE :: cord_curv=_ZERO_
REALTYPE :: gammai
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7.4.19 sealevel - using the cont. eq. to get the sealevel. (Source File: sealevel.F90)

INTERFACE:

subroutine sealevel(loop)

DESCRIPTION:

Here, the sea surface elevation is iterated according to the vertically integrated continuity equation
given in (57) on page 51.
When working with the option SLICE_MODEL, the elevations at j = 2 are copied to j = 3.
Now with consideration of fresh water fluxes (precipitation and evaporation). Positive for flux into
the water. USES:

use domain, only: imin,imax,jmin,jmax,az,H
#if defined(SPHERICAL) || defined(CURVILINEAR)

use domain, only : arcd1,dxv,dyu
#else

use domain, only : dx,dy,ard1
#endif

use m2d, only: dtm,sealevel_check
use variables_2d, only: z,zo,U,V,fwf
use getm_timers, only: tic, toc, TIM_SEALEVEL, TIM_SEALEVELH
use halo_zones, only : update_2d_halo,wait_halo,z_TAG

#ifdef USE_BREAKS
use halo_zones, only : nprocs,set_flag,u_TAG,v_TAG
use variables_2d, only: break_mask,break_stat
use domain, only : min_depth,au,av

#endif
$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: loop

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j
#ifdef USE_BREAKS

integer :: n,break_flag,break_flags(nprocs)
#endif
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7.4.20 sealevel nan check - Sweep the sealevel (z) for NaN values

INTERFACE:

subroutine sealevel_nan_check

DESCRIPTION:

The sea surface elevation (2d) variable is sweeped scanning for not-a-number (NaN). NaN values
indicate that the integration has become unstable and that it really should be stopped. First time a
NaN value is found, a warning is issued and possibly the code is stopped. After the first encounter,
the sweep is suspended.
The behaviour of this routine is controlled by the sealevel_check parameter in the m2d namelist.
USES:

use domain, only: imin,imax,jmin,jmax,ioff,joff
use m2d, only: sealevel_check
use variables_2d, only: z
use exceptions, only: getm_error
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Bjarne B\"uchmann

LOCAL VARIABLES:

integer, save :: Ncall = 0
integer, save :: can_check = 0
integer, save :: have_warned = 0
integer :: num_nan
integer :: i,j,inan,jnan, idum
REALTYPE :: ahuge,zdum
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7.4.21 sealevel nandum. Helper routine to spot NaNs

INTERFACE:

subroutine sealevel_nandum(a,b,idum)

USES:

INPUT PARAMETERS:

REALTYPE, intent(in) :: a,b

OUTPUT PARAMETERS:

integer, intent(out) :: idum

DESCRIPTION:

This routine is a kind of dummy routine primarily to provide a means to spot NaN values. Output
is 1 or 2, based on which is smaller (a or b, respectively). The default is 2, and the idea is that
”imin=2” should be returned also if a is NaN. If b=HUGE(b), then this provides a means to detect
if a is a denormal number.

92



7.4.22 depth update - adjust the depth to new elevations. (Source File: depth update.F90)

INTERFACE:

subroutine depth_update

DESCRIPTION:

This routine which is called at every micro time step updates all necessary depth related infor-
mation. These are the water depths in the T-, U- and V-points, D, DU and DV, respectively, and
the drying value α defined in equation (5) on page 14 in the T-, the U- and the V-points (dry_z,
dry_u and dry_v).
When working with the option SLICE_MODEL, the water depths in the V-points are mirrored from
j = 2 to j = 1 and j = 3. USES:

use domain, only: imin,imax,jmin,jmax,H,HU,HV,min_depth,crit_depth
use domain, only: az,au,av,dry_z,dry_u,dry_v
use variables_2d, only: D,z,zo,DU,DV
use getm_timers, only: tic, toc, TIM_DPTHUPDATE

$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j
REALTYPE :: d1,d2i,x
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7.4.23 update 2d bdy - update 2D boundaries every time step. (Source File: up-
date 2d bdy.F90)

INTERFACE:

subroutine update_2d_bdy(loop,bdyramp)

DESCRIPTION:

In this routine sea surface elevation boundary conditions are read in from a file, interpolated to
the actual time step, and distributed to the open boundary grid boxes. Only for a special test case
(SYLT_TEST), ascii data reading is supported. For a few special simple cases, analytical calculation
of boundary elevations is supported. The generic way is reading in boundary data from a netcdf
file, which is managed in get_2d_bdy via get_2d_bdy_ncdf. USES:

use domain, only: NWB,NNB,NEB,NSB,H,min_depth,imin,imax,jmin,jmax,az
use domain, only: wi,wfj,wlj,nj,nfi,nli,ei,efj,elj,sj,sfi,sli
use domain, only: bdy_index,nsbv
use domain, only: bdy_2d_type
use m2d, only: dtm,bdyfmt_2d,bdy_data,bdy_data_u,bdy_data_v
use variables_2d, only: z,D,U,DU,V,DV

#if defined(SPHERICAL) || defined(CURVILINEAR)
use domain, only: dxc,dyc

#else
use domain, only: dx,dy

#endif
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: loop,bdyramp

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

logical, save :: first=.true.
REALTYPE, save :: time_array(1000),zbo(1000),zbn(1000)
REALTYPE, save :: t,t1,t2
REALTYPE :: a,ratio,fac
integer :: i,j,k,l,n
REALTYPE, parameter :: FOUR=4.*_ONE_

94



7.4.24 do residual - barotropic residual currents. (Source File: residual.F90)

INTERFACE:

subroutine do_residual(finish)

DESCRIPTION:

Here, the residual transports and depths are integrated up every time step. At the end of the
simulation, the Eulerian residual currents are calculated from:

ures =

∫ t1

t0

U dτ

∫ t1

t0

Du dτ

, vres =

∫ t1

t0

V dτ

∫ t1

t0

Dv dτ

, (94)

where t0 is the time when the residual calculation begins (to be chosen from namelist) and t1 is
the finishing time of the model simulation.
USES:

use variables_2d, only: u,v,res_du,res_u,res_dv,res_v,du,dv
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: finish

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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7.4.25 cfl check - check for explicit barotropic time step. (Source File: cfl check.F90)

INTERFACE:

subroutine cfl_check()

DESCRIPTION:

This routine loops over all horizontal grid points and calculated the maximum time step according
to the CFL criterium by Beckers and Deleersnijder (1993):

∆tmax = min
i,j







∆xi,j∆yi,j√
2ci,j

√

∆x2
i,j +∆y2i,j






(95)

with the local shallow water wave speed

ci,j =
√

gHi,j , (96)

where g is the gravitational acceleration and Hi,j is the local bathymetry value. In case that the
chosen micro time step ∆tm is larger than ∆tmax, the program will be aborted. In any case the
CFL diagnostics will be written to standard output.
USES:

use parameters, only: g
use domain, only: imin,imax,jmin,jmax,H,az

#if defined(SPHERICAL) || defined(CURVILINEAR)
use domain, only: dyc,dxc

#else
use domain, only: dy,dx

#endif
use m2d, only: dtm
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: pos(2),max_pos(2),rc,i,j
REALTYPE :: h_max=-99.,c,max_dt,dtt
logical, dimension(:,:), allocatable :: lmask
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8 Introduction to 3d module

8.1 Overview over 3D routines in GETM

This module contains the physical core of GETM. All three-dimensional equations are iterated
here, which are currently the equations for

quantity description unit variable routine name page
pk layer-int. u-transport m2s−1 uu uu_momentum 168
qk layer-int. v-transport m2s−1 vv vv_momentum 170
θ potential temperature ◦C T do_temperature 130
S salinity psu S do_salinity 134
C suspended matter kgm−3 spm do_spm 166

The vertical grid for GETM, i.e. the layer thicknesses in all U-, V- and T-points, are defined in the
routine coordinates, see section 8.5.4 on page 8.5.4.
The grid-related vertical velocity w̄k is calculated directly from the layer-integrated continuity
equation (25) which here done in the routine ww_momentum described on page 172.
The physics of the horizontal momentum equations is given in section 3.1.1, and their trans-
formation to general vertical coordinates in section 4.2. Their numerical treatment will be dis-
cussed in the routines for the individual terms, see below. The forcing terms of the horizontal
momentum equations are calculated in various routines, such as uv_advect_3d for the three-
dimensional advection (which in turn calls advection_3d in case that higher order positive def-
inite advection schemes are chosen for the momentum equation), uv_diffusion_3d.F90 for the
horizontal diffusion, bottom_friction_3d for the bottom friction applied to the lowest layer, and
internal_pressure for the calculation of the internal pressure gradients.
The major tracer equations in any ocean model are those for potential temperature and salinity.
They are calculated in the routines do_temperature and do_salinity. A further hard-coded
tracer equation is the suspended matter equation, see do_spm.
In the near future (the present text is typed in February 2006), a general interface to the bio-
geochemical module of GOTM (also not yet released) will be available. This allow to add tracer
equations of arbitrary complexity to GETM, ranging from completely passive tracer equations to
complex ecosystem models such as ERSEM (Baretta et al. (1995)). The interfacing between this
so-called GOTM-BIO to GETM is made in a similar manner than the interfacing between GETM
and the GOTM turbulence module described in gotm on page 182. The basic structure of GOTM-
BIO has been recently presented by Burchard et al. (2006). Some more details about the tracer
equations currently included in GETM is given in section 8.2.
The entire turbulence model, which basically provides eddy viscosity νt and eddy diffusivity ν′t
is provided from the General Ocean Turbulence Model (GOTM, see Umlauf et al. (2005) for the
source code documentation and http://www.gotm.net download of source code, docomentation
and test scenarios). The turbulence module of GOTM (which is a complete one-dimensional water
column model) is coupled to GETM via the interfacing routine gotm described in section gotm on

page 182. Major input to the turbulence model are the shear squared M2 = (∂zu)
2
+ (∂zu)

2
and

the buoyancy frequency squared N2 = ∂zb with the buoyancy b from (4). Those are calculated
and interpolated to the T-points where the turbulence model columns are located in the routine
ss_nn described on page 179.
The surface and bottom stresses which need to be passed to the turbulence module as well, are
interpolated to T-points in the routine stresses_3d, see page 181.
The module rivers (see section 8.12 on page 155) organises the riverine input of fresh water from
any number of rivers.
Three-dimensional boundary conditions for temperature and salinity are provided by means of the
module bdy-3d, see section 8.11 described on page 152.
The remaining routines in the module 3d deal with the coupling of the external and the internal
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mode. The basic idea of the mode splitting has already been discussed in section 5.1. The consis-
tency of the two modes is given through the so-called slow terms, which are mode interaction terms
resulting from subtracting vertically integrated equations with parameterised advection, diffusion,
bottom friction and internal pressure gradient from vertically integrated equations with explicit
vertical resolution of these processes. These slow terms which are updated every macro time step
only (that is why we call them slow terms) need to be considered for the external mode included
in module 2d. Those slow terms are calculated here in the 3d module at the end of integrate_3d
and in the routine slow_bottom_friction, and they are added together in slow_terms, see the
descriptions in sections 8.4.3, 8.13.10 and 8.13.11 on pages 105, 176, and 177, respectively.
One other important measure of coupling the two modes is to add to all calculated u- and v-
velocity profiles the difference between their vertical integral and the time-average of the vertically
integrated transport from the previous set of micro time steps. This shifting is done in the routines
uu_momentum_3d and vv_momentum_3d and the time-average of the vertically integrated transport
is updated in the 2d module in the routine m2d and divided by the number of micro time steps
per macro time step in start_macro. Further basic calculations performed in start_macro (see
description in section 8.13.3 on page 167) are the updates of the old and new sea surface elevations
with respect to the actual macro time step. The routine stop_macro (see description in section
8.13.12 on page 178) which called at the end of each macro time step simply resets the variables
for the time-averaged transports to zero.

8.2 Tracer equations

The general conservation equation for tracers ci with 1 ≤ i ≤ Nc (with Nc being the number of trac-
ers), which can e.g. be temperature, salinity, nutrients, phytoplankton, zoo-plankton, suspended
matter, chemical concentrations etc. is given as:

∂tc
i + ∂x(uc

i) + ∂y(vc
i) + ∂z((w + αwi

s)c
i)− ∂z(ν

′
t∂zc

i)

−∂x(A
T
h ∂xc

i)− ∂y(A
T
h ∂yc

i) = Qi.
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Here, ν′t denotes the vertical eddy diffusivity and AT
h the horizontal diffusivity. Vertical migration

of concentration with migration velocity wi
s (positive for upward motion) is considered as well. This

could be i.e. settling of suspended matter or active migration of phytoplankton. In order to avoid
stability problems with vertical advection when intertidal flats are drying, the settling of SPM is
linearly reduced towards zero when the water depth is between the critical and the minimum water
depth. This is done by means of multiplication of the settling velocity with α, (see the definition
in equation (5)). Qi denotes all internal sources and sinks of the tracer ci. This might e.g. be for
the temperature equation the heating of water due to absorption of solar radiation in the water
column.
Surface of bottom boundary conditions for tracers are usually given by prescribed fluxes:

−αwi
sc

i + ν′t∂zc
i = F i

s for z = ζ (98)

and

−αwi
sc

i + ν′t∂zc
i = −F i

b for z = −H, (99)

with surface and bottom fluxes Fn
s and Fn

b directed into the domain, respectively.
At open lateral boundaries, the tracers cn are prescribed for the horizontal velocity normal to the
open boundary flowing into the domain. In case of outflow, a zero-gradient condition is used.
All tracer equations except those for temperature, salinity and suspended matter will be treated
in the future by means of GOTM-BIO.
The two most important tracer equations which are hard-coded in GETM are the transport equa-
tions for potential temperature θ in ◦C and salinity S in psu (practical salinity units):
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∂tθ + ∂x(uθ) + ∂y(vθ) + ∂z(wθ)− ∂z(ν
′
t∂zθ)

−∂x(A
θ
h∂xθ)− ∂y(A

θ
h∂yθ) =

∂zI

c′pρ0
,

(100)

∂tS + ∂x(uS) + ∂y(vS) + ∂z(wS)− ∂z(ν
′
t∂zS)

−∂x(A
S
h∂xS)− ∂y(A

S
h∂yS) = 0.

(101)

On the right hand side of the temperature equation (100) is a source term for absorption of
solar radiation with the solar radiation at depth z, I, and the specific heat capacity of water,
c′p. According to Paulson and Simpson (1977) the radiation I in the upper water column may be
parameterised by

I(z) = I0
(
ae−η1z + (1− a)e−η2z

)
. (102)

Here, I0 is the albedo corrected radiation normal to the sea surface. The weighting parameter a
and the attenuation lengths for the longer and the shorter fraction of the short-wave radiation,
η1 and η2, respectively, depend on the turbidity of the water. Jerlov (1968) defined 6 different
classes of water from which Paulson and Simpson (1977) calculated weighting parameter a and
attenuation coefficients η1 and η2.
At the surface, flux boundary conditions for T and S have to be prescribed. For the potential
temperature, it is of the following form:

ν′t∂zT =
Qs +Ql +Qb

c′pρ0
, for z = ζ, (103)

with the sensible heat flux, Qs, the latent heat flux, Ql and the long wave back radiation, Qb. Here,
the Kondo (1975) bulk formulae have been used for calculating the momentum and temperature
surface fluxes due to air-sea interactions. In the presence of sea ice, these air-sea fluxes have to
be considerably changed, see e.g. Kantha and Clayson (2000b). Since there is no sea-ice model
coupled to GETM presently, the surface heat flux is limited to positive values, when the sea surface
temperature Ts reaches the freezing point

Tf = −0.0575Ss + 1.710523 · 10−3 S1.5
s − 2.154996 · 10−4 S2

s ≈ −0.0575Ss (104)

with the sea surface salinity Ss, see e.g. Kantha and Clayson (2000a):

Qsurf =







Qs +Ql +Qb, for Ts > Tf ,

max{0, Qs +Ql +Qb}, else.
(105)

For the surface freshwater flux, which defines the salinity flux, the difference between evapora-
tion QE (from bulk formulae) and precipitation QP (from observations or atmospheric models) is
calculated:

ν′t∂zS =
S(QE −QP )

ρ0(0)
, for z = ζ, (106)

where ρ0(0) is the density of freshwater at sea surface temperature. In the presence of sea-ice,
the calculation of freshwater flux is more complex, see e.g. Large et al. (1994). However, for many
short term calculations, the freshwater flux can often be neglected compared to the surface heat
flux.
A complete revision of the surface flux calculation is currently under development. It will be the
idea to have the same surface flux calculations for GOTM and GETM. In addition to the older
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bulk formulae by Kondo (1975) we will also implement the more recent formlations by Fairall et al.
(1996).
Heat and salinity fluxes at the bottom are set to zero.

8.3 Equation of state

The coupling between the potential temperature and salinity equations and the momentum equa-
tions is due to an algebraic equation of state:

ρ = ρ(θ, S, p0) (107)

with p0 = gρ0(ζ − z) being the hydrostatic reference pressure. In order to obtain potential density
from the equation of state, p0 needs to be set to zero, which is the default in GETM.
Currently the equation of state by Fofonoff and Millard (1983) is implemented into GETM, but
the more recent and more consistent equation of state by Jackett et al. (2005) which is already
contained in GOTM will be added as an option in the near future.
For the equation of state, also linearised version are implemented into GETM, for details, see
section 8.9 on page 135.
For convinient use in other subroutines the buoyancy b as defined in (4) is calculated and stored
in the GETM variable buoy.
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8.4 Fortran: Module Interface m3d - 3D model component (Source File:
m3d.F90)

INTERFACE:

module m3d

DESCRIPTION:

This module contains declarations for all variables related to 3D hydrodynamical calculations.
Information about the calculation domain is included from the domain module. The module
contains public subroutines for initialisation, integration and clean up of the 3D model component.
The m3d module is initialised in the routine init_3d, see section 8.4.1 described on page 103. The
actual calculation routines are called in integrate_3d (see section 8.4.3 on page 105). and are
linked in from the library lib3d.a. After the simulation, the module is closed in clean_3d, see
section 8.4.4 on page 107. USES:

use exceptions
use parameters, only: avmmol
use domain, only: openbdy,maxdepth,vert_cord,az
use m2d, only: uv_advect,uv_diffusion
use variables_2d, only: z,Uint,Vint,UEx,VEx

#ifndef NO_BAROCLINIC
use temperature,only: init_temperature, do_temperature, &

init_temperature_field
use salinity, only: init_salinity, do_salinity, init_salinity_field
use eqstate, only: init_eqstate, do_eqstate
use internal_pressure, only: init_internal_pressure, do_internal_pressure
use internal_pressure, only: ip_method

#endif
use variables_3d
use advection, only: NOADV
use advection_3d, only: init_advection_3d,print_adv_settings_3d,adv_ver_iterations
use bdy_3d, only: init_bdy_3d, do_bdy_3d
use bdy_3d, only: bdy3d_tmrlx, bdy3d_tmrlx_ucut, bdy3d_tmrlx_max, bdy3d_tmrlx_min
Necessary to use halo_zones because update_3d_halos() have been moved out
temperature.F90 and salinity.F90 - should be changed at a later stage
use halo_zones, only: update_3d_halo,wait_halo,D_TAG

IMPLICIT NONE

PUBLIC DATA MEMBERS:

integer :: M=1
REALTYPE :: cord_relax=_ZERO_
integer :: vel3d_adv_split=0
integer :: vel3d_adv_hor=1
integer :: vel3d_adv_ver=1
integer :: turb_adv_split=0
integer :: turb_adv_hor=0
integer :: turb_adv_ver=0
logical :: calc_temp=.true.
logical :: calc_salt=.true.
logical :: bdy3d=.false.
integer :: bdyfmt_3d,bdy3d_ramp
character(len=PATH_MAX) :: bdyfile_3d
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REALTYPE :: ip_fac=_ONE_
integer :: vel_check=0
REALTYPE :: min_vel=-4*_ONE_,max_vel=4*_ONE_

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

logical :: advect_turbulence=.false.
#ifdef NO_BAROCLINIC

integer :: ip_method
#endif

integer :: ip_ramp=-1
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8.4.1 init 3d - initialise 3D related stuff

INTERFACE:

subroutine init_3d(runtype,timestep,hotstart)
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: runtype
REALTYPE, intent(in) :: timestep
logical, intent(in) :: hotstart

DESCRIPTION:

Here, the m3d namelist is read from getm.inp, and the initialisation of variables is called (see
routine init_variables described on page 111). Furthermore, a number of consistency checks are
made for the choices of the momentum advection schemes. When higher-order advection schemes
are chosen for the momentum advection, the compiler option UV_TVD has to be set. Here, the macro
time step ∆t is calculated from the micro time step ∆tm and the split factor M. Then, in order
to have the vertical coordinate system present already here, coordinates (see page 114) needs
to be called, in order to enable proper interpolation of initial values for potential temperature
θ and salinity S for cold starts. Those initial values are afterwards read in via the routines
init_temperature (page 128) and init_salinity (page 132). Finally, in order to prepare for the
first time step, the momentum advection and internal pressure gradient routines are initialised and
the internal pressure gradient routine is called. LOCAL VARIABLES:

integer :: rc
NAMELIST /m3d/ &

M,cnpar,cord_relax,adv_ver_iterations, &
bdy3d,bdyfmt_3d,bdy3d_ramp,bdyfile_3d, &
bdy3d_tmrlx,bdy3d_tmrlx_ucut, &
bdy3d_tmrlx_max,bdy3d_tmrlx_min, &
vel3d_adv_split,vel3d_adv_hor,vel3d_adv_ver, &
turb_adv_split,turb_adv_hor,turb_adv_ver, &
calc_temp,calc_salt, &
avmback,avhback, &
ip_method,ip_ramp, &
vel_check,min_vel,max_vel
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8.4.2 postinit 3d - re-initialise some 3D after hotstart read.

INTERFACE:

subroutine postinit_3d(runtype,timestep,hotstart)

USES:

use domain, only: imin,imax,jmin,jmax, az,au,av
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: runtype
REALTYPE, intent(in) :: timestep
logical, intent(in) :: hotstart

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

DESCRIPTION:

This routine provides possibility to reset/initialize 3D variables to ensure that velocities are cor-
rectly set on land cells after read of a hotstart file. LOCAL VARIABLES:

integer :: i,j,rc
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8.4.3 integrate 3d - calls to do 3D model integration

INTERFACE:

subroutine integrate_3d(runtype,n)
use getm_timers, only: tic, toc, TIM_INTEGR3D

#ifndef NO_BAROCLINIC
use getm_timers, only: TIM_TEMPH, TIM_SALTH

#endif
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: runtype,n

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

DESCRIPTION:

This is a wrapper routine to call all 3D related subroutines. The call position for the coordinates
routine depends on the compiler option MUDFLAT: If it is defined, then the call to coordinates
construction is made such that drying and flooding is stable. If MUDFLAT is not defined, then the
adaptive grids with Lagrangian component which are currently under development are supported.
Both, drying and flooding and Lagrangian coordinates does not go together yet. The call sequence
is as follows:

start_macro initialising a 3d step see page 167
do_bdy_3d boundary conditions for θ and S see page 154
coordinates layer heights (MUTFLAT defined) see page 114
bottom_friction_3d bottom friction see page 175
do_internal_pressure internal pressure gradient see page 144
uu_momentum_3d layer-integrated u-velocity see page 168
vv_momentum_3d layer-integrated v-velocity see page 170
coordinates layer heights (MUTFLAT not defined) see page 114
ww_momentum_3d grid-related vertical velocity see page 172
uv_advect_3d momentum advection see page 173
uv_diffusion_3d momentum diffusion see page 174
stresses_3d stresses (for GOTM) see page 181
ss_nn shear and stratification (for GOTM) see page 179
gotm interface and call to GOTM see page 182
do_temperature potential temperature equation see page 130
do_salinity salinity equation see page 134
do_eqstate equation of state see page 137
do_spm suspended matter equation see page 166
do_getm_bio call to GOTM-BIO (not yet released)
slow_bottom_friction slow bottom friction see page 176
slow_terms sum of slow terms see page 177
stop_macro finishing a 3d step see page 178
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Several calls are only executed for certain compiler options. At each time step the call sequence
for the horizontal momentum equations is changed in order to allow for higher order accuracy for
the Coriolis rotation. LOCAL VARIABLES:

logical, save :: ufirst=.true.
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8.4.4 clean 3d - cleanup after 3D run

INTERFACE:

subroutine clean_3d()
IMPLICIT NONE

INPUT PARAMETERS:

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

DESCRIPTION:

Here, a call to the routine clean_variables_3d which howewer does not do anything yet. LOCAL
VARIABLES:
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8.5 Fortran: Module Interface variables 3d - global 3D related variables
(Source File: variables 3d.F90)

INTERFACE:

module variables_3d

DESCRIPTION:

This modules contains declarations for all variables related to 3D hydrodynamical calculations.
Information about the calculation domain is included from the domain module. The variables are
either statically defined in static_3d.h or dynamically allocated in dynamic_declarations_3d.h.
The variables which need to be declared have the following dimensions, units and meanings:

kmin 2D [-] lowest index in T-point
kumin 2D [-] lowest index in U-point
kvmin 2D [-] lowest index in V-point
kmin_pmz 2D [-] lowest index in T-point (poor man’s z-coordinate)
kumin_pmz 2D [-] lowest index in U-point (poor man’s z-coordinate)
kvmin_pmz 2D [-] lowest index in V-point (poor man’s z-coordinate)
uu 3D [m2s−1] layer integrated u transport pk
vv 3D [m2s−1] layer integrated v transport qk
ww 3D [m s−1] grid-related vertical velocity w̄k

ho 3D [m] old layer height in T-point
hn 3D [m] new layer height in T-point
huo 3D [m] old layer height in U-point
hun 3D [m] new layer height in U-point
hvo 3D [m] old layer height in V-point
hvn 3D [m] new layer height in V-point
hcc 3D [-] hydrostatic consistency index in T-points
uuEx 3D [m2s−2] sum of advection and diffusion for u-equation
vvEx 3D [m2s−2] sum of advection and diffusion for v-equation
num 3D [m2s−1] eddy viscosity on w-points νt
nuh 3D [m2s−1] eddy diffusivity on w-points ν′t
tke 3D [m2s−2] turbulent kinetic energy k
eps 3D [m2s−3] turbulent dissipation rate ε
SS 3D [s−2] shear-frequency squared M2

NN 3D [s−2] Brunt-Väisälä frequency squaredN2

S 3D [psu] salinity S
T 3D [◦C] potential temperature θ
rad 3D [Wm−2] Short wave penetration
rho 3D [kgm−3] density rho
buoy 3D [m s−2] buoyancy b
idpdx 3D [m2s−2] x-component of internal pressure gradient
idpdy 3D [m2s−2] y-component of internal pressure gradient
spm 3D [kgm−3] suspended matter concentration
spm_ws 3D [m s−1] settling velocity of suspended matter
spm_pool 2D [kgm−2] bottom pool of suspended matter
uadv 3D [m s−1] interpolated x-component of momentum advection velocity
vadv 3D [m s−1] interpolated y-component of momentum advection velocity
wadv 3D [m s−1] interpolated vertical component of momentum advection velocity
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huadv 3D [m] interpolated height of advective flux layer (x-component)
hvadv 3D [m] interpolated height of advective flux layer (y-component)
hoadv 3D [m] old height of advective finite volume cell
hnadv 3D [m] new height of advective finite volume cell
sseo 2D [m] sea surface elevation before macro time step (T-point)
ssen 2D [m] sea surface elevation after macro time step (T-point)
ssuo 2D [m] sea surface elevation before macro time step (U-point)
ssun 2D [m] sea surface elevation after macro time step (U-point)
ssvo 2D [m] sea surface elevation before macro time step (V-point)
ssvn 2D [m] sea surface elevation after macro time step (V-point)
rru 2D [m s−1] drag coefficient times curret speed in U-point
rrv 2D [m s−1] drag coefficient times curret speed in V-point
taus 2D [m2s−2] normalised surface stress (T-point)
taub 2D [m2s−2] normalised bottom stress (T-point)

It should be noted that depending on compiler options and runtype not all these variables are
defined.
The module contains public subroutines to initialise (see init_variables_3d) and cleanup (see
clean_variables_3d). USES:

use domain, only: imin,imax,jmin,jmax,kmax
use field_manager
IMPLICIT NONE

PUBLIC DATA MEMBERS:

integer, parameter :: rk = kind(_ONE_)
REALTYPE :: dt,cnpar=0.9
REALTYPE :: avmback=_ZERO_,avhback=_ZERO_
logical :: do_numerical_analyses=.false.

#ifdef STATIC
#include "static_3d.h"
#else
#include "dynamic_declarations_3d.h"
#endif

REALTYPE, dimension(:,:,:), allocatable :: numdis3d
REALTYPE, dimension(:,:), allocatable :: numdis2d
REALTYPE, dimension(:,:,:), allocatable :: nummix3d_S,nummix3d_T
REALTYPE, dimension(:,:,:), allocatable :: phymix3d_S,phymix3d_T
REALTYPE, dimension(:,:), allocatable :: nummix2d_S,nummix2d_T
REALTYPE, dimension(:,:), allocatable :: phymix2d_S,phymix2d_T

#ifdef GETM_BIO
REALTYPE, allocatable :: cc3d(:,:,:,:)
REALTYPE, allocatable :: ws3d(:,:,:,:)

#endif
#ifdef _FABM_

REALTYPE, allocatable, dimension(:,:,:,:) :: fabm_pel,fabm_diag
REALTYPE, allocatable, dimension(:,:,:) :: fabm_ben,fabm_diag_hz

#endif
integer :: size3d_field
integer :: mem3d
integer :: preadapt
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REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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8.5.1 init variables 3d - initialise 3D related stuff

INTERFACE:

subroutine init_variables_3d(runtype)
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: runtype

DESCRIPTION:

Dynamic allocation of memory for 3D related fields via dynamic_allocations_3d.h (unless the
compiler option STATIC is set). Furthermore, most variables are initialised here. LOCAL VARI-
ABLES:

integer :: rc
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8.5.2 register 3d variables() - register GETM variables. (Source File: variables 3d.F90)

INTERFACE:

subroutine register_3d_variables(fm,runtype)

DESCRIPTION:

USES:

KB use variables_3d
IMPLICIT NONE

INPUT PARAMETERS:

type (type_field_manager) :: fm
integer, intent(in) :: runtype

REVISION HISTORY:

Original author(s): Karsten Bolding & Jorn Bruggeman

LOCAL VARIABLES:
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8.5.3 clean variables 3d - cleanup after 3D run.

INTERFACE:

subroutine clean_variables_3d()
IMPLICIT NONE

DESCRIPTION:

This routine cleans up after a 3D integrationby doing nothing so far.
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8.5.4 coordinates - defines the vertical coordinate (Source File: coordinates.F90)

INTERFACE:

subroutine coordinates(hotstart)

DESCRIPTION:

Here, the vertical layer distribution in T-, U- and V-points is updated during every macro time
step. This is done for the old and the new layer thicknesses at every point. Calculation of the layer
distribution in the U- and V-points is done indepently from the calculation in the T-points, since
different methods for the calculation of the bathymetry values in the U- and V-points are possible,
see routine uv_depths described on page 44.
The different methods for the vertical layer distribution are initialised and called to be chosen by
the namelist paramter vert_cord:

vert_cord=1: sigma coordinates (section 8.5.5)
vert_cord=2: z-level (not coded yet)
vert_cord=3: general vertical coordinates (gvc, section 8.5.6)
vert_cord=5: adaptive vertical coordinates (section 8.5.7)

USES:

use domain, only: imin,imax,jmin,jmax,kmax,H
#ifdef SLICE_MODEL

use variables_3d, only: kvmin,hvo,hvn
#endif

use getm_timers, only: tic, toc,TIM_COORDS
use m3d
use domain, only: vert_cord
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: cord_type
REALTYPE, intent(in) :: cord_relax
REALTYPE, intent(in) :: maxdepth
logical, intent(in) :: hotstart

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

logical, save :: first=.true.
integer :: ii
integer :: preadapt=0
integer :: i,j,k
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8.5.5 equidistant and zoomed sigma-coordinates

INTERFACE:

subroutine sigma_coordinates(first)

DESCRIPTION:

Here, the sigma coordinates layer distribution in T-, U- and V-points is calculated. The layer
interfaces for each layer index have a fixed relative position σk in the water column, which may be
even equidistant or non-equidistant, see equations (14) and (16). The surface and bottom zooming
factors du and dl are read in via the domain namelist in getm.inp as ddu and ddl. In the first call
to the sigma_coordinates, the relative interface positions dga are calculated as a one-dimensional
vector (in case of non-equidistant σ coordinates), and those are then multiplied with the water
depths in all T-, U- and V-points to get the layer thicknesses. USES:

use domain, only: imin,imax,jmin,jmax,kmax,H,HU,HV
use domain, only: ga,ddu,ddl
use variables_3d, only: kmin,kumin,kvmin,ho,hn,huo,hun,hvo,hvn
use variables_3d, only: sseo,ssen,ssuo,ssun,ssvo,ssvn
IMPLICIT NONE

INPUT PARAMETERS:

logical, intent(in) :: first

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k,rc
REALTYPE :: kmaxm1
logical, save :: equiv_sigma=.false.
REALTYPE, save, dimension(:), allocatable :: dga
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8.5.6 general vertical coordinates

INTERFACE:

subroutine general_coordinates(first,cord_relax,maxdepth)

DESCRIPTION:

Here, the general vertical coordinates layer distribution in T-, U- and V-points is calculated. The
general vertical coordinates as discussed in section 4.1, see equations (14) - (19), are basically
an interpolation between equidistant and non-equaidistant σ coordinates. During the first call, a
three-dimensional field gga containing the relative interface positions is calculated, which further
down used together with the actual water depth in the T-, U- and V-points for calculating the
updated old and new layer thicknesses.
USES:

use domain, only: ga,ddu,ddl,d_gamma,gamma_surf
use domain, only: imin,imax,jmin,jmax,kmax,H,HU,HV,az,au,av,min_depth
use variables_3d, only: dt,kmin,kumin,kvmin,ho,hn,huo,hun,hvo,hvn
use variables_3d, only: sseo,ssen,ssuo,ssun,ssvo,ssvn

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

logical, intent(in) :: first
REALTYPE, intent(in) :: cord_relax
REALTYPE, intent(in) :: maxdepth

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k,rc,kk
REALTYPE :: alpha
REALTYPE :: HH,zz,r
REALTYPE, save, dimension(:), allocatable :: dga,be,sig
REALTYPE, save, dimension(:,:,:), allocatable :: gga

116



8.5.7 adaptive vertical coordinates

INTERFACE:

subroutine adaptive_coordinates(first,hotstart)

DESCRIPTION:

The vertical grid adaptivity is partially given by a vertical diffusion equation for the vertical
layer positions, with diffusivities being proportional to shear, stratification and distance from the
boundaries. In the horizontal, the grid can be smoothed with respect to z-levels, grid layer slope and
density. Lagrangian tendency of the grid movement is supported. The adaptive terrain-following
grid can be set to be an Eulerian-Lagrangian grid, a hybrid σ-ρ or σ-z grid and combinations of
these with great flexibility. With this, internal flow structures such as thermoclines can be well
resolved and followed by the grid. A set of idealised examples is presented in Hofmeister et al.
(2009), which show that the introduced adaptive grid strategy reduces pressure gradient errors and
numerical mixing significantly.
For the configuration of parameters, a seperate namelist file adaptcoord.inp has to be given with
parameters as following:
faclag - Factor on Lagrangian coords., 0.le.faclag.le.1
facdif - Factor on thickness filter, 0.le.faclag.le.1
fachor - Factor on position filter, 0.le.faclag.le.1
cNN - dependence on stratification
cSS - dependence on shear
cdd - dep. on distance from surface and bottom
d vel - Typical velocity difference for scaling cNN adaption
d dens - Typical density difference for scaling cSS adaption
dsurf - reference value for surface/bottom distance [m]
tgrid - Time scale of grid adaptation [s]
preadapt - number of iterations for pre-adaptation

The parameters cNN,cSS,cdd are used for the vertical adaption and have to be less or equal 1
in sum. The difference to 1 is describing a background value which forces the coordinates back to
a sigma distribution. The values ddu and ddl from the domain namelist are used for weighting the
zooming to surface and bottom if cdd>0. The option preadapt allows for a pre-adaption of coor-
dinates to the initial density field and bathymetry. The number defines the number of iterations
(change coordinates, vertically advect tracer, calculate vertical gradients) used for the preadaption.
The initial temperature and salinity fields are re-interpolated onto the adapted grid afterwards.
USES:

use domain, only: ga,imin,imax,jmin,jmax,kmax,H,HU,HV,az,au,av
use variables_3d, only: dt,kmin,kumin,kvmin,ho,hn,huo,hvo,hun,hvn
use variables_3d, only: sseo,ssen,ssuo,ssun,ssvo,ssvn
use variables_3d, only: kmin_pmz,kumin_pmz,kvmin_pmz
use variables_3d, only: preadapt

ADAPTIVE-BEGIN
use parameters, only: g,rho_0
use variables_3d, only: uu,vv,SS

#ifndef NO_BAROCLINIC
use variables_3d, only: NN
use variables_3d, only: rho

#endif
use domain, only: ddu,ddl
use halo_zones, only: update_3d_halo,wait_halo
use halo_zones, only: H_TAG,U_TAG,V_TAG
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#if defined CURVILINEAR || defined SPHERICAL
use domain, only: dxv,dyu,arcd1

#else
use domain, only: dx,dy,ard1

#endif

ADAPTIVE-END

IMPLICIT NONE

INPUT PARAMETERS:

logical, intent(in) :: first
logical, intent(in) :: hotstart

OUTPUT PARAMETERS:

integer, intent(out) :: preadapt

REVISION HISTORY:

Original author(s): Richard Hofmeister and Hans Burchard

LOCAL VARIABLES:

integer :: i,j,k,rc
REALTYPE :: kmaxm1
REALTYPE :: deltaiso
REALTYPE, save, dimension(:), allocatable :: be
REALTYPE, save, dimension(:), allocatable :: NNloc ! local NN vector
REALTYPE, save, dimension(:), allocatable :: SSloc ! local SS vector
REALTYPE, save, dimension(:), allocatable :: gaa ! new relative coord.
REALTYPE, save, dimension(:), allocatable :: gaaold! old relative coord.
REALTYPE, save, dimension(:), allocatable :: aav ! total grid diffus.
REALTYPE, save, dimension(:), allocatable :: avn ! NN-rel. grid diffus.
REALTYPE, save, dimension(:), allocatable :: avs ! SS-rel. grid diffus.
REALTYPE, save, dimension(:), allocatable :: avd ! dist.-rel. grid diff.
REALTYPE, save, dimension(:,:,:), allocatable :: zpos ! new pos. of z-levels
REALTYPE, save, dimension(:,:,:), allocatable :: zposo! old pos. of z-levels
REALTYPE, save, dimension(:,:,:), allocatable :: work2,work3
REALTYPE :: faclag=_ZERO_ ! Factor on Lagrangian coords., 0.le.faclag.le.1
REALTYPE :: facdif=3*_TENTH_ ! Factor on thickness filter, 0.le.faclag.le.1
REALTYPE :: fachor=_TENTH_ ! Factor on position filter, 0.le.faclag.le.1
REALTYPE :: faciso=_ZERO_ ! Factor for isopycnal tendency
REALTYPE :: depthmin=_ONE_/5
REALTYPE :: Ncrit=_ONE_/1000000
integer :: mhor=1 ! this number is experimental - it has to be 1 for now-
integer :: iw=2 ! stencil for isopycnal tendency
REALTYPE :: rm
INTEGER :: im,iii,jjj,ii
integer :: split=1 ! splits the vertical adaption into #split steps
REALTYPE :: c1ad=_ONE_/5 ! dependence on NN
REALTYPE :: c2ad=_ZERO_ ! dependence on SS
REALTYPE :: c3ad=_ONE_/5 ! distance from surface and bottom
REALTYPE :: c4ad=6*_TENTH_ ! background value
REALTYPE :: d_vel=_TENTH_ ! Typical value of absolute shear
REALTYPE :: d_dens=_HALF_ ! Typical value of BVF squared
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REALTYPE :: dsurf=20*_ONE_ ! reference value for surface/bottom distance
REALTYPE :: tgrid=21600*_ONE_ ! Time scale of grid adaptation
REALTYPE :: dtgrid
REALTYPE :: aau(0:kmax),bu(0:kmax)
REALTYPE :: cu(0:kmax),du(0:kmax)
REALTYPE :: facupper=_ONE_
REALTYPE :: faclower=_ONE_
REALTYPE :: cNN,cSS,cdd,csum
REALTYPE :: cbg=6*_TENTH_
REALTYPE :: tfac_hor=3600*_ONE_ ! factor introducing a hor. adaption timescale = dt/tgrid_hor
integer :: iip

integer,save :: count=0
namelist /adapt_coord/ faclag,facdif,fachor,faciso, &

depthmin,Ncrit, &
cNN,cSS,cdd,cbg,d_vel,d_dens, &
dsurf,tgrid,split,preadapt

#if (defined GETM_PARALLEL && defined INPUT_DIR)
character(len=PATH_MAX) :: input_dir=INPUT_DIR

#else
character(len=PATH_MAX) :: input_dir=’./’

#endif
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8.5.8 hcc check - hydrostatic consistency criteria

INTERFACE:

subroutine hcc_check()

DESCRIPTION:

This diagnostic routine calculates the hydrostatic consistency hc in each T-point and each layer.
hc is defined as:

hc
i,j,k = max

{

|∂xzk|
∆x

1
2 (hi,j,k + hi+1,j,k)

, |∂yzk|
∆y

1
2 (hi,j,k + hi,j+1,k)

}

. (108)

For the numerical calculation it is used here that ∆x and ∆y can be cancelled out each. For hc ≤ 1,
the grid box is hydrostatically consistent, else it is called hydrostatically inconsistent. In the latter
case, numerical problems can be expected for terrain-following coordinates when stratification is
strong.
hc is stored in the 3d netcdf output file. USES:

use domain, only: imin,imax,jmin,jmax,kmax,az,au,av,HU,HV
use variables_3d, only: hn,hun,hvn,hcc
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: i,j,k
REALTYPE :: du1,du2,dv1,dv2
REALTYPE :: x,y
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8.6 Fortran: Module Interface 3D advection (Source File: advection 3d.F90)

INTERFACE:

module advection_3d

DESCRIPTION:

This module does 3D advection of scalars. The module follows the same convention as the other
modules in ’getm’. The module is initialised by calling ’init advection 3d()’. In the time-loop
’do advection 3d’ is called. ’do advection 3d’ is a wrapper routine which - dependent on the
actual advection scheme chosen - makes calls to the appropriate subroutines, which may be done
as one-step or multiple-step schemes. The actual subroutines are coded in external FORTRAN
files. New advection schemes are easily implemented - at least from a program point of view - since
only this module needs to be changed. Additional work arrays can easily be added following the
stencil given below. To add a new advection scheme three things must be done:

1. define a unique constant to identify the scheme (see e.g. UPSTREAM and TVD)

2. adopt the select case in do_advection_3d and

3. write the actual subroutine.

USES:

use domain, only: imin,imax,jmin,jmax,kmax
use advection
IMPLICIT NONE
private

PUBLIC DATA MEMBERS:

public init_advection_3d, do_advection_3d,print_adv_settings_3d
integer,public :: adv_ver_iterations=1
integer,public,parameter :: HVSPLIT=3,W_TAG=33
character(len=64),public,parameter :: adv_splits_3d(0:3) = &

(/"no split: one 3D uvw step ", &
"full step splitting: u + v + w ", &
"half step splitting: u/2 + v/2 + w + v/2 + u/2", &
"hor/ver splitting: uv + w "/)

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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8.6.1 init advection 3d

INTERFACE:

subroutine init_advection_3d()

DESCRIPTION:

Allocates memory. USES:

IMPLICIT NONE
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8.6.2 do advection 3d - 3D advection schemes

INTERFACE:

subroutine do_advection_3d(dt,f,uu,vv,ww,hu,hv,ho,hn, &
split,hscheme,vscheme,AH,tag, &
hires,advres)

DESCRIPTION:

Here, advection terms for all three-dimensional state variables are calculated by means of a finite-
volume approach (an exception is the possibility to directly calculate the momentum advection
by a one-step three-dimensional upstream scheme, see uv_advection_3d) and the advection step
is carried out as a fractional advection time step. Those 3D variables may be defined on T-, U-,
V- and W-points. The latter option is interesting for turbulent quantities. Inside this advection
routine, it does not matter, wehre the advected variable is located on the grid. All finite volume
fluxes and geometric coefficients need to be calculated before do_advection_3d is called.
Originally, this 3D advection routine has been written for tracer equations. There, after multiplying
the layer-integrated and transformed to curvilinear coordinates tracer equation (40) with mn, the
advective terms in this equation are discretised as follows.
First advection term in (40):

(

mn∂X

(pkck
n

))

i,j
≈

pi,j,k c̃
u
i,j,k∆yui,j − pi−1,j,k c̃

u
i−1,j,k∆yui−1,j

∆xc
i,j∆yci,j

(109)

Second advection term in (40):

(

mn∂Y

(qkck
m

))

i,j
≈

qi,j,k c̃
v
i,j,k∆yvi,j − qi,j−1,k c̃

v
i,j−1,k∆yvi,j−1

∆xc
i,j∆yci,j

(110)

Vertical advective fluxes in (40):

(w̄k c̃k)i,j ≈ wi,j,k c̃
w
i,j,k. (111)

The interfacial concentrations c̃i,j,k are calculated according to upwind or higher order directional
split schemes, which are discussed in detail below and in sections 7.4.2 and 8.6.4.
However, as said above, in the same way these routines may be applied to quantities on U-, V-,
and W-points, if the transports are properly calculated.
There are various combinations of advection schemes possible.
The options for split are:

split = NOSPLIT: no split (one 3D uvw step)
split = FULLSPLIT: full step splitting (u + v + w)
split = HALFSPLIT: half step splitting (u/2 + v/2 + w + v/2 + u/2)
split = HVSPLIT: hor./ver. splitting (uv + w)

The options for the horizontal scheme hscheme are:
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scheme = NOADV: advection disabled
scheme = UPSTREAM: first-order upstream (monotone)
scheme = UPSTREAM_2DH: 2DH upstream with forced monotonicity
scheme = P2: third-order polynomial (non-monotone)
scheme = SUPERBEE: second-order TVD (monotone)
scheme = MUSCL: second-order TVD (monotone)
scheme = P2_PDM: third-order ULTIMATE-QUICKEST (monotone)
scheme = J7: 2DH Arakawa J7
scheme = FCT: 2DH FCT with forced monotonicity
scheme = P2_2DH: 2DH P2 with forced monotonicity

The options for the vertical scheme vscheme are:

scheme = NOADV: advection disabled
scheme = UPSTREAM: first-order upstream (monotone)
scheme = P2: third-order polynomial (non-monotone)
scheme = SUPERBEE: second-order TVD (monotone)
scheme = MUSCL: second-order TVD (monotone)
scheme = P2_PDM: third-order ULTIMATE-QUICKEST (monotone)

With the compiler option SLICE_MODEL, the advection in meridional direction is not executed.
USES:

use halo_zones, only: update_3d_halo,wait_halo,D_TAG,H_TAG,U_TAG,V_TAG
use getm_timers, only: tic,toc,TIM_ADV3D,TIM_ADV3DH
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE,intent(in) :: dt,AH
REALTYPE,dimension(I3DFIELD),intent(in) :: uu,vv,ww,ho,hn,hu,hv
integer,intent(in) :: split,hscheme,vscheme,tag

INPUT/OUTPUT PARAMETERS:

REALTYPE,dimension(I3DFIELD),intent(inout) :: f

OUTPUT PARAMETERS:

REALTYPE,dimension(I3DFIELD),target,intent(out),optional :: hires,advres

LOCAL VARIABLES:

type(t_adv_grid),pointer :: adv_grid
REALTYPE,dimension(I3DFIELD),target :: fi,hi,adv
REALTYPE,dimension(:,:,:),pointer,contiguous :: p_hi,p_adv
integer :: tag2d,i,j,k
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8.6.3 print adv settings 3d

INTERFACE:

subroutine print_adv_settings_3d(split,hscheme,vscheme,AH)

DESCRIPTION:

Checks and prints out settings for 3D advection.
!USES IMPLICIT NONE INPUT PARAMETERS:

integer,intent(inout):: split
integer,intent(in) :: hscheme,vscheme
REALTYPE,intent(in) :: AH

LOCAL VARIABLES:
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8.6.4 adv split w - vertical advection of 3D quantities

INTERFACE:

subroutine adv_split_w(dt,f,fi,hi,adv,ww, &
splitfac,scheme,tag,az, &
itersmax)

Note (KK): Keep in sync with interface in advection_3d.F90

DESCRIPTION:

Executes an advection step in vertical direction. The 1D advection equation

hn
i,j,kc

n
i,j,k = ho

i,j,kc
o
i,j,k −∆t

(
wi,j,k c̃

w
i,j,k − wi,j,k−1c̃

w
i,j,k−1

)
, (112)

is accompanied by an fractional step for the 1D continuity equation

hn
i,j,k = ho

i,j,k −∆t
(
wi,j,k−̃wi,j,k−1

)
. (113)

Here, n and o denote values before and after this operation, respectively, n denote intermediate
values when other 1D advection steps come after this and o denotes intermediate values when other
1D advection steps came before this.
The interfacial fluxes c̃wi,j,k are calculated by means of monotone and non-monotone schemes which
are described in detail in section 7.4.7 on page 73. USES:

use domain, only: imin,imax,jmin,jmax,kmax,ioff,joff
use advection, only: adv_interfacial_reconstruction
use advection, only: NOADV,UPSTREAM
use advection_3d, only: W_TAG
use halo_zones, only: U_TAG,V_TAG

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE,intent(in) :: dt,splitfac
REALTYPE,dimension(I3DFIELD),intent(in),target :: f
REALTYPE,dimension(I3DFIELD),intent(in) :: ww
integer,intent(in) :: scheme,tag,itersmax
integer,dimension(E2DFIELD),intent(in) :: az

INPUT/OUTPUT PARAMETERS:

REALTYPE,dimension(I3DFIELD),target,intent(inout) :: fi,hi,adv

LOCAL VARIABLES:

logical :: iterate,use_limiter,allocated_aux
integer :: i,j,k,kshift,it,iters,iters_new,rc
REALTYPE :: itersm1,dti,dtik,hio,advn,fuu,fu,fd,splitfack
REALTYPE,dimension(:),allocatable :: wflux
REALTYPE,dimension(:),allocatable,target :: cfl0
REALTYPE,dimension(:),pointer :: fo,faux,fiaux,hiaux,advaux,cfls
REALTYPE,dimension(:),pointer :: p_fiaux,p_hiaux,p_advaux
REALTYPE,dimension(:),pointer :: p1d

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
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8.7 Fortran: Module Interface temperature (Source File: temperature.F90)

INTERFACE:

module temperature

DESCRIPTION:

In this module, the temperature equation is processed by reading in the namelist temp and ini-
tialising the temperature field (this is done in init_temperature), and calculating the advection-
diffusion-equation, which includes penetrating short-wave radiation as source term (see do_temperature).
USES:

use exceptions
use domain, only: imin,jmin,imax,kmax,jmax,H,az,dry_z
use domain, only: ill,ihl,jll,jhl
use domain, only: ilg,ihg,jlg,jhg

KB use get_field, only: get_3d_field
use variables_3d, only: rk,T,rad,hn,kmin,A,g1,g2
use halo_zones, only: update_3d_halo,wait_halo,D_TAG,H_TAG
IMPLICIT NONE
private

PUBLIC DATA MEMBERS:

public init_temperature, do_temperature, init_temperature_field
!PRIVATE DATA MEMBERS:
integer :: temp_method=1,temp_format=2
character(len=PATH_MAX) :: temp_file="t_and_s.nc"
integer :: temp_field_no=1
character(len=32) :: temp_name=’temp’
REALTYPE :: temp_const=20.
integer :: temp_adv_split=0
integer :: temp_adv_hor=1
integer :: temp_adv_ver=1
REALTYPE :: temp_AH=-_ONE_
integer :: attenuation_method=0,jerlov=1
character(len=PATH_MAX) :: attenuation_file="attenuation.nc"
integer :: ncid=-1,A_id,g1_id,g2_id
integer, allocatable :: varids(:)
character(len=50), allocatable :: varnames(:)
integer :: old_month=-1
REALTYPE :: A_const=0.58,g1_const=0.35,g2_const=23.0
REALTYPE :: swr_bot_refl_frac=-_ONE_
REALTYPE :: swr_min_bot_frac=0.01
integer :: temp_check=0
REALTYPE :: min_temp=-2.,max_temp=35.

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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8.7.1 init temperature - initialisation of temperature

INTERFACE:

subroutine init_temperature()

DESCRIPTION:

Here, the temperature equation is initialised. First, the namelist temp is read from getm.inp. Then,
depending on the temp_method, the temperature field is read from a hotstart file (temp_method=0),
initialised with a constant value (temp_method=1), initialised and interpolated with horizontally
homogeneous temperature from a given temperature profile (temp_method=2), or read in and
interpolated from a 3D netCDF field (temp_method=3). Finally, a number of sanity checks are
performed for the chosen temperature advection schemes. USES:

use advection, only: J7
use advection_3d, only: print_adv_settings_3d
IMPLICIT NONE

LOCAL VARIABLES:

integer :: k,i,j,n
integer :: status
namelist /temp/ &

temp_method,temp_const,temp_file, &
temp_format,temp_name,temp_field_no, &
temp_adv_split,temp_adv_hor,temp_adv_ver,temp_AH, &
attenuation_method,attenuation_file,jerlov, &
A_const,g1_const,g2_const, &
swr_bot_refl_frac, swr_min_bot_frac, &
temp_check,min_temp,max_temp
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8.7.2 init temperature field - initialisation of temperature field

INTERFACE:

subroutine init_temperature_field()

DESCRIPTION:

Initialise the temperature field as specified with temp method and exchange the HALO zones
USES:

IMPLICIT NONE

INPUT PARAMETERS:

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

LOCAL VARIABLES:

integer :: k,i,j,n
integer, parameter :: nmax=10000
REALTYPE :: zlev(nmax),prof(nmax)
integer :: status
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8.7.3 do temperature - temperature equation

INTERFACE:

subroutine do_temperature(n)

DESCRIPTION:

Here, one time step for the temperature equation is performed. First, preparations for the call to
the advection schemes are made, i.e. calculating the necessary metric coefficients. After the call
to the advection schemes, which actually perform the advection (and horizontal diffusion) step as
an operational split step, the solar radiation at the interfaces (rad(k)) is calculated from given
surface radiation (swr_loc) by means of a double exponential approach, see equation (102) on
page 99). An option to reflect part of the short wave radiation that reaches the bottom has been
implemented. In very shallow waters - or with very clear waters - a significant part of the incoming
radiation will reach the bottom. Setting swr bot refl frac to a value between 0 and 1 will reflect
this fraction of what ever the value of SWR is at the bottom. The default value of swr bot refl frac
is 0. The reflection is only done if the ratio between the surface and bottom values of SWR is
greater than swr min bot frac (default 0.01). Furthermore, the surface heat flux sfl_loc is given
a value. The sea surface temperature is limited by the freezing point temperature (as a most
primitive sea ice model). The next step is to set up the tri-diagonal matrix for calculating the
new temperature by means of a semi-implicit central scheme for the vertical diffusion. Source
terms which appear on the right hand sides are due to the divergence of the solar radiation at the
interfaces. The subroutine is completed by solving the tri-diagonal linear equation by means of a
tri-diagonal solver. USES:

use time, only: month,timestr
use advection_3d, only: do_advection_3d
use variables_3d, only: dt,cnpar,hn,ho,nuh,uu,vv,ww,hun,hvn,S
use domain, only: imin,imax,jmin,jmax,kmax,az
use meteo, only: swr,shf
use parameters, only: rho_0,cp
use parameters, only: avmolt
use getm_timers, only: tic, toc, TIM_TEMP, TIM_MIXANALYSIS
use variables_3d, only: do_numerical_analyses
use variables_3d, only: nummix3d_T,nummix2d_T
use variables_3d, only: phymix3d_T,phymix2d_T

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: n

LOCAL VARIABLES:

integer :: i,j,k,rc
REALTYPE :: T2(I3DFIELD)
OMP-NOTE: The pointer declarations is to allow each omp thread to
have its own work storage (over a vertical).
REALTYPE, POINTER :: Res(:)
REALTYPE, POINTER :: auxn(:),auxo(:)
REALTYPE, POINTER :: a1(:),a2(:),a3(:),a4(:)
REALTYPE, POINTER :: rad1d(:)
REALTYPE :: zz,swr_loc,shf_loc
REALTYPE :: swr_refl
REALTYPE :: rho_0_cpi
integer :: status
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8.8 Fortran: Module Interface Salinity (Source File: salinity.F90)

INTERFACE:

module salinity

DESCRIPTION:

In this module, the salinity equation is processed by reading in the namelist salt and initialising
the salinity field (this is done in init_salinity), and calculating the advection-diffusion-equation
(see do_salinity). USES:

use exceptions
use domain, only: imin,jmin,imax,jmax,kmax,ioff,joff
use domain, only: H,az

KB use get_field, only: get_3d_field
use variables_2d, only: fwf_int
use variables_3d, only: rk,S,hn,kmin
use halo_zones, only: update_3d_halo,wait_halo,D_TAG,H_TAG
IMPLICIT NONE
private

PUBLIC DATA MEMBERS:

public init_salinity, do_salinity, init_salinity_field
!PRIVATE DATA MEMBERS:
integer :: salt_method=1,salt_format=2
character(len=PATH_MAX) :: salt_file="t_and_s.nc"
integer :: salt_field_no=1
character(len=32) :: salt_name=’salt’
REALTYPE :: salt_const=35*_ONE_
integer :: salt_adv_split=0
integer :: salt_adv_hor=1
integer :: salt_adv_ver=1
REALTYPE :: salt_AH=-_ONE_
integer :: salt_check=0
REALTYPE :: min_salt=_ZERO_,max_salt=40*_ONE_

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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8.8.1 init salinity - initialisation of salinity

INTERFACE:

subroutine init_salinity()

DESCRIPTION:

Here, the salinity equation is initialised. First, the namelist salt is read from getm.inp. Then,
depending on the salt_method, the salinity field is read from a hotstart file (salt_method=0),
initialised with a constant value (salt_method=1), initialised and interpolated with horizontally
homogeneous salinity from a given salinity profile (salt_method=2), or read in and interpolated
from a 3D netCDF field (salt_method=3). Finally, a number of sanity checks are performed for
the chosen salinity advection schemes.
Apart from this, there are various options for specific initial conditions which are selected by means
of compiler options. USES:

use advection, only: J7
use advection_3d, only: print_adv_settings_3d
IMPLICIT NONE

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

LOCAL VARIABLES:

integer :: i,j,k,n
integer :: status
NAMELIST /salt/ &

salt_method,salt_const,salt_file, &
salt_format,salt_name,salt_field_no, &
salt_adv_split,salt_adv_hor,salt_adv_ver,salt_AH, &
salt_check,min_salt,max_salt
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8.8.2 init salinity field - initialisation of the salinity field

INTERFACE:

subroutine init_salinity_field()

DESCRIPTION:

Initialisation of the salinity field as specified by salt method and exchange of the HALO zones
USES:

IMPLICIT NONE

INPUT PARAMETERS:

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

LOCAL VARIABLES:

integer :: i,j,k,n
integer, parameter :: nmax=10000
REALTYPE :: zlev(nmax),prof(nmax)
integer :: status
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8.8.3 do salinity - salinity equation

INTERFACE:

subroutine do_salinity(n)

DESCRIPTION:

Here, one time step for the salinity equation is performed. First, preparations for the call to the
advection schemes are made, i.e. calculating the necessary metric coefficients. After the call to
the advection schemes, which actually perform the advection (and horizontal diffusion) step as
an operational split step, the tri-diagonal matrix for calculating the new salinity by means of a
semi-implicit central scheme for the vertical diffusion is set up. There are no source terms on the
right hand sides. The subroutine is completed by solving the tri-diagonal linear equation by means
of a tri-diagonal solver.
Also here, there are some specific options for single test cases selected by compiler options. USES:

use advection_3d, only: do_advection_3d
use variables_3d, only: dt,cnpar,hn,ho,nuh,uu,vv,ww,hun,hvn
use domain, only: imin,imax,jmin,jmax,kmax,az
use parameters, only: avmols
use getm_timers, only: tic, toc, TIM_SALT, TIM_MIXANALYSIS
use variables_3d, only: do_numerical_analyses
use variables_3d, only: nummix3d_S,nummix2d_S
use variables_3d, only: phymix3d_S,phymix2d_S

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: n

LOCAL VARIABLES:

integer :: i,j,k,rc
REALTYPE, POINTER :: Res(:)
REALTYPE, POINTER :: auxn(:),auxo(:)
REALTYPE, POINTER :: a1(:),a2(:),a3(:),a4(:)
REALTYPE :: S2(I3DFIELD)
integer :: status
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8.9 Fortran: Module Interface eqstate (Source File: eqstate.F90)

INTERFACE:

module eqstate

DESCRIPTION:

Documentation will follow when the equation of state calculations are updated. The idea is to use
the respective routines from GOTM. USES:

use domain, only: imin,imax,jmin,jmax,kmax,az
use parameters, only: g,rho_0
use variables_3d, only: T,S,rho
IMPLICIT NONE

PUBLIC DATA MEMBERS:

public init_eqstate, do_eqstate
!PRIVATE DATA MEMBERS:
integer :: eqstate_method=3
REALTYPE :: T0 = 10., S0 = 33.75, p0 = 0.
REALTYPE :: dtr0 = -0.17, dsr0 = 0.78

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

135



8.9.1 init eqstate

INTERFACE:

subroutine init_eqstate()
IMPLICIT NONE

DESCRIPTION:

Reads the namelist and makes calls to the init functions of the various model components. LOCAL
VARIABLES:

namelist /eqstate/ eqstate_method,T0,S0,p0,dtr0,dsr0
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8.9.2 do eqstate - equation of state

INTERFACE:

subroutine do_eqstate()

DESCRIPTION:

Here, the equation of state is calculated for every 3D grid point. USES:

use domain, only: imin,imax,jmin,jmax,kmax,az
use variables_3d, only: kmin,T,S,rho,buoy,hn,alpha,beta
use getm_timers, only: tic, toc, TIM_EQSTATE

$ use omp_lib
IMPLICIT NONE

LOCAL VARIABLES:

integer :: i,j,k
REALTYPE :: x
REALTYPE :: p1,s1,t1
REALTYPE :: th,densp
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8.9.3 rho from theta unesco80

INTERFACE:

subroutine rho_from_theta_unesco80(T,S,rho)

DESCRIPTION:

Here, the equation of state is calculated using the UNESCO 1980 code. USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: T ! potential temperature degC
REALTYPE, intent(in) :: S ! salinity PSU

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: rho ! density [kg/m3]

REVISION HISTORY:

LOCAL VARIABLES:

REALTYPE :: x,T1,T2,T3,T4,T5,S1,S2,S3
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8.9.4 rho from theta

INTERFACE:

subroutine rho_from_theta(s,th,p,dens0,densp)

DESCRIPTION:

Here, the equation of state is calculated Uses Jackett ea 2006 algorithm specific for potential
temperature Checkvalue S=35 T=25 p=10000 rho from theta = 1062.53817
s : salinity (psu) th : potential temperature (deg C, ITS-90) p : gauge pressure (dbar) (absolute
pressure - 10.1325 dbar)
rho from theta : in-situ density (kg m−3)
check value : rho from theta(20,20,1000) = 1017.728868019642
based on DRJ on 10/12/03 USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: th ! potential temperature degC
REALTYPE, intent(in) :: s ! in situ salinity PSU
REALTYPE, intent(in) :: p ! pressure in dbars

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: dens0 ! density at 0.0 dbars
REALTYPE, intent(out) :: densp ! density at p dbars

REVISION HISTORY:

AS 2009 based on code provided by Jackett 2005
See the log for the module
!LOCAL VARIABLES
REALTYPE th2,sqrts,anum,aden,pth
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8.9.5 eosall from theta

INTERFACE:

subroutine eosall_from_theta(s,th,p,rho_s,rho_th)

DESCRIPTION:

in-situ density and its derivatives (only 2) as functions of salinity, potential temperature and
pressure as in Jackett, McDougall, Feistel, Wright and Griffies (2006), JAOT
s : salinity (psu) th : potential temperature (deg C, ITS-90) p : gauge pressure (dbar) (absolute
pressure - 10.1325 dbar)
rho : in-situ density (kg m−3) rho s : partial derivative wrt s (kg m−3 psu−1) rho th : partial
derivative wrt th (kg m−3 deg C−1)
check values : eosall from theta(20,20,1000,...) gives
rho = 1017.728868019642 rho s = 0.7510471164699279 rho th = -0.2570255211349140
based on DRJ on 10/12/03 USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: th ! potential temperature degC
REALTYPE, intent(in) :: s ! in situ salinity PSU
REALTYPE, intent(in) :: p ! pressure in dbars

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: rho_s ! partial derivative wrt s
REALTYPE, intent(out) :: rho_th ! partial derivative wrt th

REVISION HISTORY:

AS 2009 based on code provided by Jackett 2005
See the log for the module
!LOCAL VARIABLES
REALTYPE :: th2,sqrts,anum,aden,pth
REALTYPE :: rho,anum_s,aden_s,anum_th,aden_th,rec_aden
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8.10 Fortran: Module Interface internal pressure (Source File: inter-
nal pressure.F90)

INTERFACE:

module internal_pressure

DESCRIPTION:

In GETM, various methods are provided for the calculation of the internal pressure gradients terms
in x- and y-direction. These terms which appear as layer-integrated terms in the equations for the
layer-integrated momentum are for the eastward momentum pk (see equation (26)):
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and for the northward layer-integrated momentum qk (see equation (27)):
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The major problem is how to calculate the horizontal (with respect to isogeopotentials) buoyancy
gradients ∂∗

xb and ∂∗
yb, which need to be defined at the interfaces positioned vertically between two

velocity points.
The methods for calculating the internal pressure gradient included in GETM are currently:

1. Method by Mellor et al. (1994), see routine ip_blumberg_mellor

2. Modified Mellor et al. (1994) method, exact for linear density profiles with z-dependence
only, see routine ip_blumberg_mellor_lin

3. Calculation by mean of linear interpolation to z-levels, see routine ip_z_interpol

4. Method by Song (1998), see routine ip_song_wright

5. Method by Chu and Fan (2003), see routine ip_chu_fan

6. Method by Shchepetkin and McWilliams (2003), see routine ip_shchepetkin_mcwilliams

7. Method by Stelling and van Kester (1994), see routine ip_stelling_vankester.F90

It is possible, by setting the compiler option SUBSTR_INI_PRESS, to substract the initial pressure
gradient from all pressure gradients. This is only advisable for strong stratification without any
initial internal pressure gradients. In this case any non-zero values of the resulting numerical initial
pressure gradient are due to discretisation errors. USES:

use exceptions
use domain, only: imin,imax,jmin,jmax,kmax,az,au,av,H,HU,HV

#if defined(SPHERICAL) || defined(CURVILINEAR)
use domain, only: dxu,dyv

#else
use domain, only: dx,dy

#endif
use variables_3d, only: kmin,hun,hvn,idpdx,idpdy,buoy,ssun,ssvn,ssen

#ifdef MUDFLAT
use variables_3d, only: hn=>ho
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#else
use variables_3d, only: hn

#endif
IMPLICIT NONE

PUBLIC DATA MEMBERS:

public init_internal_pressure, do_internal_pressure
integer, public :: ip_method=1

#ifdef STATIC
REALTYPE :: zz(I3DFIELD)

#ifdef SUBSTR_INI_PRESS
REALTYPE :: idpdx0(I3DFIELD),idpdy0(I3DFIELD)

#endif
#else

REALTYPE, allocatable :: zz(:,:,:)
#ifdef SUBSTR_INI_PRESS

REALTYPE, allocatable :: idpdx0(:,:,:),idpdy0(:,:,:)
#endif
#endif
!PRIVATE DATA MEMBERS:
integer, private, parameter :: BLUMBERG_MELLOR=1
integer, private, parameter :: BLUMBERG_MELLOR_LIN=2
integer, private, parameter :: Z_INTERPOL=3
integer, private, parameter :: SONG_WRIGHT=4
integer, private, parameter :: CHU_FAN=5
integer, private, parameter :: SHCHEPETKIN_MCWILLIAMS=6
integer, private, parameter :: STELLING_VANKESTER=7

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
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8.10.1 init internal pressure - initialising internal pressure gradient

INTERFACE:

subroutine init_internal_pressure()
IMPLICIT NONE

DESCRIPTION:

Here, some necessary memory is allocated (in case of the compiler option STATIC), and information
is written to the log-file of the simulation.
!LOCAL VARIABLES integer :: rc

143



8.10.2 do internal pressure - internal pressure gradient

INTERFACE:

subroutine do_internal_pressure()

DESCRIPTION:

Here, the chosen internal pressure gradient method is selected and (in case that the compiler
option SUBSTR_INI_PRESS is set), the initial pressure is calculated and subtracted from the updated
internal pressure gradient.
If GETM is executed as slice model (compiler option SLICE_MODEL is set, the internal pressure
gradient for j = 2 is copied to j = 3. USES:

use getm_timers, only: tic, toc, TIM_INTPRESS
IMPLICIT NONE

LOCAL VARIABLES:

integer :: i,j,k
logical, save :: first=.true.
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8.10.3 ip blumberg mellor -

INTERFACE:

subroutine ip_blumberg_mellor()

DESCRIPTION:

Here, the internal part of the pressure gradient is discretised according to Mellor et al. (1994). The
crucial part of this term, which is (∂∗

xb)k (in the case of the u-equation), is discretised between two
vertically adjacent velocity points:
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where zii,j,k is the z-coordinate of the interface in the T-point above the grid box with the index

(i, j, k).
The discretisation of (∂∗

yb)k for the v-equation is done accordingly.
In this routine, as a first step, the interface heights are calculated in the T-points, in order to allow
for the calculation of the coordinate slopes in the U- and V-points. In a second step, the expression
(116) equivalent formulation for the y-direction are integrated up downwards, beginning from the
surface. USES:

use internal_pressure
$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard, Adolf Stips, Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k
REALTYPE :: dxm1,dym1
REALTYPE :: grdl,grdu,buoyl,buoyu,prgr,dxz,dyz
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8.10.4 ip blumberg mellor lin

INTERFACE:

subroutine ip_blumberg_mellor_lin()

DESCRIPTION:

Here, the internal pressure gradient calculation is carried out on the basis of the same buoyancy
stencil than in the method according to Mellor et al. (1994) (see routine ip_blumberg_mellor),
but in such a way that the pressure gradient numerically vanishes for linear stratification without
horizontal gradients.
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where zci,j,k is the z-coordinate of the centre of the grid box with the index (i, j, k).

The discretisation of (∂∗
yb)k for the v-equation is done accordingly. USES:

use internal_pressure
use variables_3d, only: kumin_pmz,kvmin_pmz

$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k
REALTYPE :: dxm1,dym1
REALTYPE :: prgr,dxzu,dxzl,dyzu,dyzl
REALTYPE :: dzr2,dzr1,dxru,dxrl,dyru,dyrl,aa,bb,cc
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8.10.5 ip z interpol

INTERFACE:

subroutine ip_z_interpol()

DESCRIPTION:

Here, the horizontal gradients of buoyancy, (∂∗
xb)k and (∂∗

yb)k, are directly calculated in z-coordinates
by linearly interpolating the buoyancies in the vertical to the evaluation point (which is the in-
terface vertically located between the velocity points). In the case that extrapolations become
necessary near the sloping surface (or more likely) near the sloping bottom, then the last regular
buoyancy value (surface value or bottom value) is used. USES:

use internal_pressure
$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k, rc
REALTYPE :: dxm1,dym1
REALTYPE :: grdl,grdu,buoyl,prgr,dxz,dyz
integer :: kplus,kminus
REALTYPE, POINTER :: zx(:)
REALTYPE :: buoyplus,buoyminus
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8.10.6 ip song wright

INTERFACE:

subroutine ip_song_wright()

DESCRIPTION:

Here, the pressure gradient is calculating according to an energy-conserving method suggested by
Song (1998), which for the pressure gradient in x-direction looks as:
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where zci,j,k is the z-coordinate of the centre of the grid box with the index (i, j, k).

The discretisation of (∂∗
yb)k for the v-equation is done accordingly. USES:

use internal_pressure
$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k
REALTYPE :: dxm1,dym1
REALTYPE :: grdl,grdu,buoyl,buoyu,prgr,dxz,dyz
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8.10.7 ip chu fan

INTERFACE:

subroutine ip_chu_fan()

DESCRIPTION:

This routine calculates the internal pressure gradient based on the classical approach by Mellor
et al. (1994), extended by the hydrostatic extension by Chu and Fan (2003). USES:

use internal_pressure
$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding & Adolf Stips

LOCAL VARIABLES:

integer :: i,j,k
REALTYPE :: dxm1,dym1,x,y,x1,y1,hc
REALTYPE :: grdl,grdu,buoyl,buoyu,prgr,dxz,dyz
REALTYPE, PARAMETER :: SIXTH=_ONE_/6

149



8.10.8 ip shchepetkin mcwilliams

INTERFACE:

subroutine ip_shchepetkin_mcwilliams()

DESCRIPTION:

Here, the pressure gradient is calculated according to the method and the algorithm suggested
by Shchepetkin and McWilliams, 2003. This method uses a nonconservative Density-Jacobian
scheme, based on cubic polynomial fits for the bouyancy ”buoy” and ”zz”, the vertical position of
rho-points, as functions of its respective array indices. The cubic polynomials are monotonized by
using harmonic mean instead of linear averages to interpolate slopes. Exact anti-symmetry of the
density Jacobian

J(rho, zz) = −J(zz, rho) (119)

is retained for the density/bouyancy Jacobian in the pressure gradient formulation in x-direction
for a non aligned vertical coordinate σ, the atmospheric pressure p0 and the sea surface elevation
η:
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Details about the calculation of the integral over the Jacobian in (120) can be found in Shchepetkin
and McWilliams, 2003.
If parameter OneFifth (below) is set to zero, the scheme should become identical to standard
Jacobian. USES:

use internal_pressure
use variables_3d, only: buoy,sseo
use domain, only: H,az,au,av

$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Richard Hofmeister

LOCAL VARIABLES:

integer :: i,j,k
REALTYPE :: dR(I3DFIELD)
REALTYPE :: dZ(I3DFIELD)
REALTYPE :: P(I3DFIELD)
REALTYPE :: dxm1,dym1,cff,cff1,cff2
REALTYPE :: AJ
REALTYPE :: eps=1.e-10
REALTYPE :: OneFifth = 0.2
REALTYPE :: FC(I2DFIELD)
REALTYPE :: dZx(I2DFIELD)
REALTYPE :: dRx(I2DFIELD)
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8.10.9 ip stelling vankester

INTERFACE:

subroutine ip_stelling_vankester()

DESCRIPTION:

Here, the horizontal gradients of buoyancy, (∂∗
xb)k and (∂∗

yb)k, are calculated as suggested in
Stelling and vanKester (1994). The horizontal gradient of buoyancy is calculated with defining
kmax non-sloping control volumes in each water column and evaluating the horizontal gradients at
the intersections of neighbouring control volumes. For each intersection, the buoyancy gradient is
evaluated by linear interpolation of the buoyancy profile in the neighbour column at the T-depth
of the actual column for both directions. The minimum of the absolute value of the buoyancy
gradient for both directions is used then for the internal pressure calculation. If both gradients point
inconcistently in different directions, the buoyancy gradient in an intersection does not contribute
to the internal pressure (as happens for violated hydrostatic consistency and strong stratification)
USES:

use internal_pressure
$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Richard Hofmeister

LOCAL VARIABLES:

integer :: i,j,k,l,kcount, rc
REALTYPE :: dxm1,dym1
REALTYPE :: prgr,dyz,dzz,zlm
integer :: klower,kupper
integer :: lnum
REALTYPE :: db,dcn,dcm
logical :: changed
REALTYPE :: zltmp
REALTYPE :: buoyplus,buoyminus
REALTYPE :: zi(I3DFIELD)
REALTYPE, POINTER :: zx(:)
REALTYPE, POINTER :: zl(:)
REALTYPE, POINTER :: dzl(:)
REALTYPE, POINTER :: dzfrac(:)
integer, POINTER :: lvel(:)
integer, POINTER :: m(:)
integer, POINTER :: n(:)
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8.11 Fortran: Module Interface bdy 3d - 3D boundary conditions (Source
File: bdy 3d.F90)

INTERFACE:

module bdy_3d

DESCRIPTION:

Here, the three-dimensional boundary conditions for temperature and salinity are handled. USES:

use halo_zones, only : H_TAG,U_TAG,V_TAG
use domain, only: imin,jmin,imax,jmax,kmax,H,az,au,av
use domain, only: nsbv,NWB,NNB,NEB,NSB,bdy_index
use domain, only: wi,wfj,wlj,nj,nfi,nli,ei,efj,elj,sj,sfi,sli
use variables_3d

#ifdef _FABM_
use getm_fabm, only: fabm_calc,model,fabm_pel,fabm_ben

#endif
IMPLICIT NONE
private

PUBLIC DATA MEMBERS:

public init_bdy_3d, do_bdy_3d
REALTYPE, public, allocatable :: S_bdy(:,:),T_bdy(:,:)

#ifdef _FABM_
REALTYPE, public, allocatable :: bio_bdy(:,:,:)
integer, public, allocatable :: have_bio_bdy_values(:)

#endif
logical, public :: bdy3d_tmrlx=.false.
REALTYPE, public :: bdy3d_tmrlx_ucut=_ONE_/50
REALTYPE, public :: bdy3d_tmrlx_max=_ONE_/4
REALTYPE, public :: bdy3d_tmrlx_min=_ZERO_
!PRIVATE DATA MEMBERS:
REALTYPE, allocatable :: bdyvertS(:), bdyvertT(:)
REALTYPE, allocatable :: rlxcoef(:)

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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8.11.1 init bdy 3d - initialising 3D boundary conditions

INTERFACE:

subroutine init_bdy_3d()

DESCRIPTION:

Here, the necessary fields S_bdy and T_bdy for salinity and temperature, respectively, are allocated.
USES:

IMPLICIT NONE

LOCAL VARIABLES:

integer :: rc,i,j,k,n
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8.11.2 do bdy 3d - updating 3D boundary conditions

INTERFACE:

subroutine do_bdy_3d(tag,field)

DESCRIPTION:

Here, the boundary conditions for salinity and temperature are copied to the boundary points and
relaxed to the near boundary points by means of the flow relaxation scheme by Martinsen and
Engedahl (1987).
As an extention to the flow relaxation scheme, it is possible to relax the boundary point values
to the specified boundary condition in time, thus giving more realistic situations especially for
outgoing flow conditions. This nudging is implemented to depend on the local (3D) current velocity
perpendicular to the boundary. For strong outflow, the boundary condition is turned off, while for
inflows it is given a high impact. USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: tag

INPUT/OUTPUT PARAMETERS:

REALTYPE, intent(inout) :: field(I3DFIELD)

LOCAL VARIABLES:

integer :: i,j,k,l,n,o,ii,jj,kk
REALTYPE :: sp(1:4),rat
REALTYPE :: bdy3d_tmrlx_umin
REALTYPE :: wsum
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8.12 Fortran: Module Interface rivers (Source File: rivers.F90)

INTERFACE:

module rivers

DESCRIPTION:

This module includes support for river input. Rivers are treated the same way as meteorology,
i.e. as external module to the hydrodynamic model itself. The module follows the same scheme
as all other modules, i.e. init_rivers sets up necessary information, and do_rivers updates the
relevant variables. do_river is called in getm/integration.F90 between the 2d and 3d routines
as it only updates the sea surface elevation (in 2d) and sea surface elevation, and optionally salinity
and temperature (in 3d). At present the momentum of the river water is not include, the model
however has a direct response to the river water because of the pressure gradient introduced.
USES:

use domain, only: imin,jmin,imax,jmax,ioff,joff
#if defined(SPHERICAL) || defined(CURVILINEAR)

use domain, only: H,az,kmax,arcd1
#else

use domain, only: H,az,kmax,ard1
#endif

use m2d, only: dtm
use variables_2d, only: z

#ifndef NO_BAROCLINIC
use m3d, only: calc_salt,calc_temp
use variables_3d, only: hn,ssen,T,S

#endif
#ifdef GETM_BIO

use bio, only: bio_calc
use bio_var, only: numc
use variables_3d, only: cc3d

#endif
#ifdef _FABM_

use getm_fabm, only: model,fabm_pel
#endif

IMPLICIT NONE
private

PUBLIC DATA MEMBERS:

public init_rivers, do_rivers, clean_rivers
#ifdef GETM_BIO

public init_rivers_bio
#endif
#ifdef _FABM_

public init_rivers_fabm
#endif

integer, public :: river_method=0,nriver=0,rriver=0
logical,public :: use_river_temp = .false.
logical,public :: use_river_salt = .false.
character(len=64), public :: river_data="rivers.nc"
character(len=64), public, allocatable :: river_name(:)
character(len=64), public, allocatable :: real_river_name(:)
integer, public, allocatable :: ok(:)
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REALTYPE, public, allocatable :: river_flow(:)
REALTYPE, public, allocatable :: river_salt(:)
REALTYPE, public, allocatable :: river_temp(:)
integer, public :: river_ramp= -1
REALTYPE, public :: river_factor= _ONE_
REALTYPE, public,parameter :: temp_missing=-9999.0
REALTYPE, public,parameter :: salt_missing=-9999.0
integer, public, allocatable :: river_split(:)

#ifdef GETM_BIO
REALTYPE, public, allocatable :: river_bio(:,:)
REALTYPE, public, parameter :: bio_missing=-9999.0

#endif
#ifdef _FABM_

REALTYPE, public, allocatable :: river_fabm(:,:)
#endif
!PRIVATE DATA MEMBERS:
integer :: river_format=2
character(len=64) :: river_info="riverinfo.dat"
integer, allocatable :: ir(:),jr(:)
REALTYPE, allocatable :: rzl(:),rzu(:)
REALTYPE, allocatable :: irr(:)
REALTYPE, allocatable :: macro_height(:)
REALTYPE, allocatable :: flow_fraction(:),flow_fraction_rel(:)
logical :: river_outflow_properties_follow_source_cell=.true.

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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8.12.1 init rivers

INTERFACE:

subroutine init_rivers

DESCRIPTION:

First of all, the namelist rivers is read from getm.F90 and a number of vectors with the length of
nriver (number of rivers) is allocated. Then, by looping over all rivers, the ascii file river_info
is read, and checked for consistency. The number of used rivers rriver is calculated and it is
checked whether they are on land (which gives a warning) or not. When a river name occurs more
than once in river_info, it means that its runoff is split among several grid boxed (for wide river
mouths). USES:

IMPLICIT NONE

LOCAL VARIABLES:

integer :: i,j,n,nn,ni,rc,m,iriver,jriver,numcells
logical :: outside,outsidehalo
REALTYPE :: bathy, area, total_weight
character(len=255) :: line,xxx
NAMELIST /rivers/ &

river_method,river_info,river_format,river_data,river_ramp, &
river_factor,use_river_salt,use_river_temp,river_outflow_properties_follow_source_cel

157



8.12.2 read river info

INTERFACE:

subroutine read_river_info()

DESCRIPTION:

Read global indices for river positions, the river name and optionally depth range over which to
distribute the water - zl:zu. Negative values imply ’bottom’ for zl and ’surface’ for zu. USES:

IMPLICIT NONE

LOCAL VARIABLES:

logical :: exist
integer :: unit = 25 ! kbk
integer :: n,rc,ios
character(len=255) :: line
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8.12.3 init rivers bio

INTERFACE:

subroutine init_rivers_bio()

DESCRIPTION:

First, memory for storing the biological loads from rivers is allocated. The variable - river_bio -
is initialised to - bio_missing. USES:

IMPLICIT NONE

LOCAL VARIABLES:

integer :: rc
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8.12.4 init rivers fabm

INTERFACE:

subroutine init_rivers_fabm()

DESCRIPTION:

First, memory for storing the biological loads from rivers is allocated. The variable - river_fabm
- is initialised to - variable- specific missing values obtained provided by FABM. USES:

IMPLICIT NONE

LOCAL VARIABLES:

integer :: rc,m
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8.12.5 do rivers - updating river points

INTERFACE:

subroutine do_rivers(do_3d)

DESCRIPTION:

Here, the temperature, salinity, sea surface elevation and layer heights are updated in the river
inflow grid boxes. Temperature and salinity are mixed with riverine values proportional to the old
volume and the river inflow volume at that time step, sea surface elevation is simply increased by
the inflow volume divided by the grid box area, and the layer heights are increased proportionally.
USES:

IMPLICIT NONE

INPUT PARAMETERS:

logical, intent(in) :: do_3d

LOCAL VARIABLES:

integer :: i,j,k,m,n
integer :: kl,kh
integer, save :: nn=0
REALTYPE :: ramp=_ONE_
REALTYPE :: rvol,height
REALTYPE :: river_depth,x

161



8.12.6 clean rivers

INTERFACE:

subroutine clean_rivers

DESCRIPTION:

This routine closes the river handling by writing the integrated river run-off for each river to
standard output. USES:

IMPLICIT NONE

LOCAL VARIABLES:

integer :: i,j,n
REALTYPE :: tot=_ZERO_

162



8.13 Fortran: Module Interface suspended matter (Source File: spm.F90)

INTERFACE:

module suspended_matter

DESCRIPTION:

This model for Suspended Particulate Matter (SPM) considers a single class of non-cohesive SPM
particles that do not interact with the mean flow (no density effect of SPM is taken into account
by default). The concentration C of SPM is modelled with the tracer equation. At the bottom,
the net SPM flux is the residual of erosion and sedimentation fluxes:

−wsC − ∂z(ν
′
t∂zC) = Fe − Fs, (121)

where erosion and sedimentation fluxes are modelled following Krone (1962) as functions of the
bottom shear stress τb. In (121), ws is a positive settling velocity. So far, GETM is only coded for
constant settling velocities. The erosion flux is only non-zero when the bottom shear stress exceeds
a critical shear stress τce:

Fe =







max

{
ce
ρ0

(|τb| − τce), 0

}

, for B > 0 and |τb| > τce

0, else

(122)

with ce erosion constant with units kg sm−4 and the fluff layer SPM content B (see below). The
sedimentation flux is only non-zero for bottom shear stresses smaller than a critical shear stress
τcs. This flux is limited by the near bottom concentration Cb:

Fs = max

{
wsCb

τcs
(τcs − |τb|), 0

}

. (123)

Critical shear stresses for erosion and sedimentation (τce and τcs have as units Nm−2). However,
the SPM flux between the water column and the bed may be switched off by setting spm_method
in spm.inp to zero. A pool B of non-dynamic particulate matter (fluff layer) is assumed in order
to take into account the effects of depletion of erodible material at the bottom. A horizontally
homogeneous distribution with B = B0 kgm−2 is initially assumed. Sedimentation and erosion fill
and empty this pool, respectively:

∂t(B) = Fs − Fe (124)

and the erosion flux is constricted by the availability of SPM from the pool (see eq. (122)). The
erosion and sedimentation fluxes are discretised using the quasi-implicit Patankar (1980) approach,
which guarantees positivity of SPM, but only in the diffusion step, negative values might appear
after the advection step, although these negative values should be small. The settling of SPM is
linearly reduced towards zero when the water depth is between the critical and the minimum water
depth. This is done by means of multiplication of the settling velocity with α, (see the definition
in equation (5)).
It is possible to take into account the impact of sediments on density by setting spm_dens to .true.
The modified density is computed as:

ρ = ρT,S,p +

(

1− ρT,S,p

ρspm

)

C. (125)

USES:

use exceptions
use domain, only: imin,jmin,imax,jmax,kmax,ioff,joff
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#ifdef TRACER_POSITIVE
use m2d, only : z,D

#endif
use domain, only: H,az
use parameters, only: rho_0,g
use variables_3d, only: hn,taub,spm,spm_ws,spm_pool
use halo_zones, only: update_3d_halo,wait_halo,D_TAG,H_TAG
IMPLICIT NONE
private

PUBLIC DATA MEMBERS:

public init_spm, do_spm
logical, public :: spm_calc=.false.
logical, public :: spm_save=.true.
logical, public :: spm_hotstart=.false.
!PRIVATE DATA MEMBERS:
integer :: spm_method=1
integer :: spm_init_method=1, spm_format=2
character(len=PATH_MAX) :: spm_file="spm.nc"
character(len=32) :: spm_name=’spm’
integer :: spm_adv_split=0
integer :: spm_adv_hor=1
integer :: spm_adv_ver=1
REALTYPE :: spm_AH = -_ONE_
REALTYPE :: spm_const= _ZERO_
REALTYPE :: spm_init= _ZERO_
integer :: spm_ws_method = 0
REALTYPE :: spm_ws_const=0.001
REALTYPE :: spm_erosion_const, spm_tauc_sedimentation
REALTYPE :: spm_tauc_erosion, spm_pool_init
REALTYPE :: spm_porosity=_ZERO_
REALTYPE :: spm_rho= 2650.
logical :: spm_dens=.false.
For erosion-sedimentation flux
REALTYPE :: Erosion_flux , Sedimentation_flux
logical :: erosed_flux =.false.
For flocculation (not yet in namelist)
REALTYPE :: spm_gellingC=0.08 !(g/l or kg/m3)
REALTYPE :: spm_part_density=2650. !(g/l or kg/m3)
integer :: spm_mfloc=4

REVISION HISTORY:

Original author(s): Manuel Ruiz Villarreal, Karsten Bolding
and Hans Burchard
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8.13.1 init spm

INTERFACE:

subroutine init_spm(nml_file,runtype)

DESCRIPTION:

Here, the suspended matter equation is initialised. First, the namelist spm is read from getm.inp.
Then, depending on the spm_init_method, the suspended matter field is read from a hotstart file
(spm_init_method=0), initialised with a constant value (spm_init_method=1), initialised and in-
terpolated with horizontally homogeneous suspended matter from a given suspended matter profile
(spm_init_method=2), or read in and interpolated from a 3D netCDF field (spm_init_method=3).
Then, some specifications for the SPM bottom pool are given, such as that there should be no initial
SPM pool on tidal flats.
As the next step, a number of sanity checks is performed for the chosen suspended matter advection
schemes.
Finally, the settling velocity is directly prescibed or calculated by means of the Zanke (1977)
formula. USES:

For initialization of spm in intertidal flats
use domain,only: min_depth
use advection, only: J7
use advection_3d, only: print_adv_settings_3d
IMPLICIT NONE

INPUT PARAMETERS:

character(len=*), intent(in) :: nml_file
logical :: hotstart_spm
integer, intent(in) :: runtype

REVISION HISTORY:

See revision for the module

LOCAL VARIABLES:

integer :: i,j,k,n
integer :: rc
integer, parameter :: nmax=100
REALTYPE :: zlev(nmax),prof(nmax)
No initial pool of spm at intertidal flats
logical :: intertidal_spm0=.false.
namelist /spm_nml/ spm_calc,spm_save,spm_method,spm_init_method, &

spm_const,spm_format,spm_file,spm_name, &
spm_adv_split,spm_adv_hor,spm_adv_ver, &
spm_AH,spm_ws_method,spm_ws_const, &
spm_erosion_const, spm_tauc_sedimentation, &
spm_tauc_erosion, spm_porosity, spm_pool_init, &
spm_rho,spm_dens
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8.13.2 do spm - suspended matter equation

INTERFACE:

subroutine do_spm()

DESCRIPTION:

Here, one time step for the suspended matter equation is performed. First, preparations for the
call to the advection schemes are made, i.e. calculating the necessary metric coefficients and the
relevant vertical velocity, which is here composed of the grid-related vertical flow velocity and the
settling velocity. Some lines of code allow here for consideration of flocculation processes. After
the call to the advection schemes, which actually perform the advection (and horizontal diffusion)
step as an operational split step, the fluxes between bottom SPM pool and the suspended matter
in the water column are calculated. Afterwards, the tri-diagonal matrix for calculating the new
suspended matter by means of a semi-implicit central scheme for the vertical diffusion is set up.
There are no source terms on the right hand sides. The subroutine is completed by solving the
tri-diagonal linear equation by means of a tri-diagonal solver.
Optionally, the density of the sediment-laden water may be corrected by the sediment density, see
eq. (125).
Finally, some special settings for single test cases are made via compiler options. USES:

use advection_3d, only: do_advection_3d
use variables_3d, only: dt,cnpar,hun,hvn,ho,nuh,uu,vv,ww

#ifndef NO_BAROCLINIC
use variables_3d, only: rho

#endif
use domain, only: dry_z
IMPLICIT NONE

LOCAL VARIABLES:

integer :: i,j,k,rc
REALTYPE,dimension(I3DFIELD) :: wwadv
REALTYPE :: spmtot
REALTYPE :: Res(0:kmax)
REALTYPE :: auxn(1:kmax-1),auxo(1:kmax-1)
REALTYPE :: a1(0:kmax),a2(0:kmax)
REALTYPE :: a3(0:kmax),a4(0:kmax)
REALTYPE :: bed_flux
REALTYPE :: c
REALTYPE :: volCmud,volCpart
integer :: k2
logical :: patankar=.true.

#ifdef TRACER_POSITIVE
logical :: kk

#endif
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8.13.3 start macro - initialise the macro loop (Source File: start macro.F90)

INTERFACE:

subroutine start_macro()

DESCRIPTION:

This routine needs to be called from m3d at the beginning of each macro time step. Here, the
sea surface elevations at the before and after the macro time step are updated at the T-, U- and
V-points.the sea surface elevations at the before and after the macro time step are updated at the
T-, U- and V-points, their notation is sseo, ssen, ssuo, ssun, ssvo and ssvn, where e, u and v
stand for T-, U- and V-point and o and n for old and new, respectively, see also the description of
variables_3d in section 8.5 on page 108.
Furthermore, the vertically integrated transports Uint and Vint are here divided by the number
of micro time steps per macro time step, M, in order to obtain the time-averaged transports.
USES:

use domain, only: imin,imax,jmin,jmax,H,HU,HV,min_depth
use m2d, only: z,Uint,Vint
use m3d, only: M
use variables_3d, only: sseo,ssen,ssuo,ssun,ssvo,ssvn,Dn,Dun,Dvn
use variables_3d, only: Uavg, Vavg
use getm_timers, only: tic, toc, TIM_STARTMCR
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j
REALTYPE :: split
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8.13.4 uu momentum 3d - x-momentum eq. (Source File: uu momentum 3d.F90)

INTERFACE:

subroutine uu_momentum_3d(n,bdy3d)

DESCRIPTION:

Here, the budget equation for layer-averaged momentum in eastern direction, pk, is calculated.
The physical equation is given as equation (1), the layer-integrated equation as (26), and after
curvilinear transformation as (38). In this routine, first the Coriolis rotation term, fqk is calculated,
either as direct transport averaging, or following Espelid et al. (2000) by using velocity averages
(in case the compiler option NEW_CORI is set).
As a next step, explicit forcing terms (advection, diffusion, internal pressure gradient, surface
stresses) are added up (into the variable ex(k)), the eddy viscosity is horizontally interpolated to
the U-point, and the barotropic pressure gradient is calculated (the latter includes the pressure
gradient correction for drying points, see section 5.5). Afterwards, the matrix is set up for each
water column, and it is solved by means of a tri-diagonal matrix solver.
In case that the compiler option STRUCTURE_FRICTION is switched on, the frictional effect of struc-
tures in the water column is calculated by adding the quadratic frictional term Cu

√
u2 + v2

(with a minus sign on the right hand side) numerically implicitly to the u-equation, with the

friction coefficient C. The explicit part of this term, C
√
u2 + v2, is calculated in the routine

structure_friction_3d.F90.
Finally, the new velocity profile is shifted such that its vertical integral is identical to the time
integral of the vertically integrated transport. If the compiler option MUDFLAT is defined, this
fitting of profiles is made with respect to the new surface elevation, otherwise to the old surface
elevation.
When GETM is run as a slice model (compiler option SLICE_MODEL is activated), the result for
j = 2 is copied to j = 3. USES:

use exceptions
use parameters, only: g,avmmol,rho_0
use domain, only: imin,imax,jmin,jmax,kmax,H,HU,min_depth
use domain, only: dry_u,coru,au,av,az

#if defined CURVILINEAR || defined SPHERICAL
use domain, only: dxu,arud1,dxx,dyc,dyx,dxc

#else
use domain, only: dx,dy

#endif
use variables_2d, only: Uint,D
use bdy_3d, only: do_bdy_3d
use variables_3d, only: dt,cnpar,kumin,uu,vv,huo,hun,hvo,uuEx,ww,hvn
use variables_3d, only: num,nuh,sseo,ssun,rru
use variables_3d, only: ssuo

#ifdef _MOMENTUM_TERMS_
use variables_3d, only: tdv_u,cor_u,ipg_u,epg_u,vsd_u,hsd_u,adv_u

#endif
#ifdef STRUCTURE_FRICTION

use variables_3d, only: sf
#endif
#ifndef NO_BAROCLINIC

use variables_3d, only: idpdx
#endif

use halo_zones, only: update_3d_halo,wait_halo,U_TAG
use meteo, only: tausx,airp
use m3d, only: ip_fac
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use m3d, only: vel_check,min_vel,max_vel
use getm_timers, only: tic, toc, TIM_UUMOMENTUM, TIM_UUMOMENTUMH

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: n
logical, intent(in) :: bdy3d

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k,rc
#ifdef NEW_CORI

REALTYPE,dimension(I3DFIELD) :: work3d
#endif

REALTYPE, POINTER :: dif(:)
REALTYPE, POINTER :: auxn(:),auxo(:)
REALTYPE, POINTER :: a1(:),a2(:)
REALTYPE, POINTER :: a3(:),a4(:)
REALTYPE, POINTER :: Res(:),ex(:)
REALTYPE :: zp,zm,zx,ResInt,Diff,Vloc
REALTYPE :: gamma=g*rho_0
REALTYPE :: cord_curv=_ZERO_
REALTYPE :: gammai,rho_0i
integer :: status
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8.13.5 vv momentum 3d - y-momentum eq. (Source File: vv momentum 3d.F90)

INTERFACE:

subroutine vv_momentum_3d(n,bdy3d)

DESCRIPTION:

Here, the budget equation for layer-averaged momentum in northern direction, qk, is calculated.
The physical equation is given as equation (2), the layer-integrated equation as (27), and after
curvilinear transformation as (39). In this routine, first the Coriolis rotation term, fpk is calculated,
either as direct transport averaging, or following Espelid et al. (2000) by using velocity averages
(in case the compiler option NEW_CORI is set).
As a next step, explicit forcing terms (advection, diffusion, internal pressure gradient, surface
stresses) are added up (into the variable ex(k)), the eddy viscosity is horizontally interpolated to
the V-point, and the barotropic pressure gradient is calculated (the latter includes the pressure
gradient correction for drying points, see section 5.5). Afterwards, the matrix is set up for each
water column, and it is solved by means of a tri-diagonal matrix solver.
In case that the compiler option STRUCTURE_FRICTION is switched on, the frictional effect of
structures in the water column is calculated by adding the quadratic frictional term Cv

√
u2 + v2

(with a minus sign on the right hand side) numerically implicitly to the v-equation, with the

friction coefficient C. The explicit part of this term, C
√
u2 + v2, is calculated in the routine

structure_friction_3d.F90.
Finally, the new velocity profile is shifted such that its vertical integral is identical to the time
integral of the vertically integrated transport. If the compiler option MUDFLAT is defined, this
fitting of profiles is made with respect to the new surface elevation, otherwise to the old surface
elevation.
When GETM is run as a slice model (compiler option SLICE_MODEL is activated), the result for
j = 2 is copied to j = 1 and j = 3. USES:

use exceptions
use parameters, only: g,avmmol,rho_0
use domain, only: imin,imax,jmin,jmax,kmax,H,HV,min_depth
use domain, only: dry_v,corv,au,av,az

#if defined CURVILINEAR || defined SPHERICAL
use domain, only: dyv,arvd1,dxc,dyx,dyc,dxx

#else
use domain, only: dx,dy

#endif
use variables_2d, only: Vint,D
use bdy_3d, only: do_bdy_3d
use variables_3d, only: dt,cnpar,kvmin,uu,vv,huo,hvo,hvn,vvEx,ww,hun
use variables_3d, only: num,nuh,sseo,ssvn,rrv
use variables_3d, only: ssvo

#ifdef _MOMENTUM_TERMS_
use variables_3d, only: tdv_v,cor_v,ipg_v,epg_v,vsd_v,hsd_v,adv_v

#endif
#ifdef STRUCTURE_FRICTION

use variables_3d, only: sf
#endif
#ifndef NO_BAROCLINIC

use variables_3d, only: idpdy
#endif

use halo_zones, only: update_3d_halo,wait_halo,V_TAG
use meteo, only: tausy,airp
use m3d, only: ip_fac
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use m3d, only: vel_check,min_vel,max_vel
use getm_timers, only: tic, toc, TIM_VVMOMENTUM, TIM_VVMOMENTUMH

$ use omp_lib
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: n
logical, intent(in) :: bdy3d

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k,rc
#ifdef NEW_CORI

REALTYPE,dimension(I3DFIELD) :: work3d
#endif

REALTYPE, POINTER :: dif(:)
REALTYPE, POINTER :: auxn(:),auxo(:)
REALTYPE, POINTER :: a1(:),a2(:)
REALTYPE, POINTER :: a3(:),a4(:)
REALTYPE, POINTER :: Res(:),ex(:)
REALTYPE :: zp,zm,zy,ResInt,Diff,Uloc
REALTYPE :: gamma=g*rho_0
REALTYPE :: cord_curv=_ZERO_
REALTYPE :: gammai,rho_0i
integer :: status
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8.13.6 ww momentum 3d - continuity eq. (Source File: ww momentum 3d.F90)

INTERFACE:

subroutine ww_momentum_3d()

DESCRIPTION:

Here, the local continuity equation is calculated in order to obtain the grid-related vertical velocity
w̄k. An layer-integrated equation for this quantity is given as equation (25) which has been derived
from the differential formulation (3).
Since the kinematic boundary condition must hold (and is used for the derivation of (25)), the grid-
related vertical velocity at the surface muzst be zero, i.e. w̄kmax

= 0. This is a good consistence check
for the mode splitting, since this is only fulfilled if the vertically integrated continuity equation
(which is the sea surface elevation equation calculated on the micro time step) and this local
continuity equation are compatible.
The physical vertical velocity is then recalculated from the grid-related vertical velocity by means
of (32), ... which should soon be coded in the routine tow in the directory futils. USES:

use domain, only: imin,imax,jmin,jmax,kmax
#if defined(SPHERICAL) || defined(CURVILINEAR)

use domain, only: arcd1,dxv,dyu
#else

use domain, only: dx,dy,ard1
#endif

use variables_3d, only: dt,kmin,uu,vv,ww,ho,hn
#define CALC_HALO_WW

#ifndef CALC_HALO_WW
use domain, only: az
use halo_zones, only: update_3d_halo,wait_halo,z_TAG

#endif
use getm_timers, only: tic, toc, TIM_WWMOMENTUM, TIM_WWMOMENTUMH

$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

REALTYPE :: dtm1
integer :: i,j,k
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8.13.7 uv advect 3d - 3D momentum advection (Source File: uv advect 3d.F90)

INTERFACE:

subroutine uv_advect_3d()

DESCRIPTION:

Wrapper to prepare and do calls to routine do_advection_3d (see section 8.6.2 on page 123) to
calculate the advection terms of the 3D velocities.
If save_numerical_analyses is set to .true., the numerical dissipation is calculated using the
method suggested by Burchard (2012). USES:

use domain, only: imin,imax,jmin,jmax,kmax,az,au,av,ax
#if defined(SPHERICAL) || defined(CURVILINEAR)

use domain, only: dxv,dyu
#else

use domain, only: dx,dy
#endif

use m3d, only: vel3d_adv_split,vel3d_adv_hor,vel3d_adv_ver
use variables_3d, only: dt,uu,vv,ww,ho,hn,hun,hvn,uuEx,vvEx
use advection, only: NOADV,UPSTREAM,J7
use advection_3d, only: do_advection_3d
use halo_zones, only: update_3d_halo,wait_halo,U_TAG,V_TAG
use variables_3d, only: do_numerical_analyses
use variables_3d, only: numdis3d,numdis2d

#ifdef _MOMENTUM_TERMS_
use variables_3d, only: adv_u,adv_v

#endif
use getm_timers, only: tic,toc,TIM_UVADV3D,TIM_UVADV3DH

$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k
REALTYPE,dimension(I3DFIELD) :: fadv3d,uuadv,vvadv,wwadv,huadv,hvadv
REALTYPE,dimension(I3DFIELD),target :: hnadv
REALTYPE,dimension(:,:,:),pointer,contiguous :: phadv
REALTYPE,dimension(I3DFIELD) :: work3d,hires
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8.13.8 uv diffusion 3d - lateral diffusion of 3D velocity (Source File: uv diffusion 3d.F90)

INTERFACE:

subroutine uv_diffusion_3d()

DESCRIPTION:

This wrapper calls routine uv_diff_2dh (see section 7.4.15 on page 84) for each layer. USES:

use domain, only: imin,imax,jmin,jmax,kmax
use m2d, only: uv_diff_2dh
use m2d, only: Am
use variables_3d, only: uu,vv,uuEx,vvEx,hn,hun,hvn

#ifdef _MOMENTUM_TERMS_
use variables_3d, only: hsd_u,hsd_v

#endif
use getm_timers, only: tic, toc, TIM_UVDIFF3D

$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Knut Klingbeil

LOCAL VARIABLES:

integer :: i,j,k
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8.13.9 bottom friction 3d - bottom friction (Source File: bottom friction 3d.F90)

INTERFACE:

subroutine bottom_friction_3d

DESCRIPTION:

Based on the assumption that the velocity distribution in the bottom layer is logarithmic, the
product of the drag coefficient with the absolute value of the current speed in the bottom layer,

r
√

u2
b + v2b (126)

with the velocity components of the bottom layer, ub and vb, and the drag coefficient

r =




κ

ln
(

0.5h1+zb
0

zb
0

)





2

, (127)

is calculated and provided as output parameters rru (for U-points) and rrv (for V-points). The
layer height h1 in (127) is set to the thickness of the bottom layer in the respective U- or V-point.
There are some experimental options for the interested user included here. It is possible to change
the interpolation of u to V-points and of v to U-points from velocity-based interpolation (as done
presently) to transport-based averaging (commented out). Furthermore, the user may activate some
outcommented lines which allow the consideration of flow-depending bottom roughness length zb0
according to (81), see page 81.
For a derivation of (127), see section 5.4 on page 30. USES:

use parameters, only: kappa,avmmol
use domain, only: imin,imax,jmin,jmax,kmax,au,av,min_depth
use variables_2d, only: zub,zvb,zub0,zvb0
use variables_3d, only: kumin,kvmin,uu,vv,huo,hun,hvo,hvn,rru,rrv
use getm_timers, only: tic, toc, TIM_BOTTFRICT3D

$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,kk
REALTYPE :: r,hh,fricvel
logical, save :: first=.true.
REALTYPE :: uuloc(I2DFIELD)
REALTYPE :: uvloc(I2DFIELD)
REALTYPE :: vuloc(I2DFIELD)
REALTYPE :: vvloc(I2DFIELD)
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8.13.10 slow bottom friction - slow bed friction (Source File: slow bottom friction.F90)

INTERFACE:

subroutine slow_bottom_friction

DESCRIPTION:

This routine basically calculates the bed friction, as it would come out if the vertically and macro
timestep averaged velocity would be used. The output of this subroutine is thus R

√
u2 + v2 on the

U-points (see variable ruu) and on the V-points (see rvv) with the vertically and macro timestep
averaged velocity components on the old time step, u and v, which are in the code denoted by Ui
and Vi, respectively. The drag coefficient R is given by eq. (71) on page 53. The results for the
variables ruu and rvv will then be used in the routine slow_terms described on page 177 for the
calculation of the slow terms Sx

F and Sy
F , see section 7.1.

USES:

use parameters, only: kappa
use domain, only: imin,imax,jmin,jmax,HU,HV,min_depth,au,av
use variables_2d, only: zub,zvb,ru,rv,Uinto,Vinto
use variables_3d, only: ssuo,ssun,ssvo,ssvn
use getm_timers, only: tic, toc, TIM_SLOWBFRICT
use exceptions, only: getm_error

$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j
REALTYPE :: uloc,vloc,HH
logical,save :: first=.true.
REALTYPE :: Ui(I2DFIELD)
REALTYPE :: Vi(I2DFIELD)
REALTYPE :: ruu(I2DFIELD)
REALTYPE :: rvv(I2DFIELD)
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8.13.11 slow terms - calculation of slow terms (Source File: slow terms.F90)

INTERFACE:

subroutine slow_terms

DESCRIPTION:

Here, the calculation of the so-called slow terms (which are the interaction terms between the
barotropic and the baroclinic mode) is completed. The mathematical form of these slow terms
is given by equations (63) - (70), see section 7.1. These calculations have been prepared in the
routines integrate_3d and slow_bottom_friction. USES:

use domain, only: imin,imax,jmin,jmax,kmax,HU,HV,au,av
use variables_2d, only: Uint,Vint,UEx,VEx,Slru,Slrv,SlUx,SlVx,ru,rv
use variables_3d, only: kumin,kvmin,uu,vv,huo,hun,hvo,hvn
use variables_3d, only: ssuo,ssun,ssvo,ssvn,uuEx,vvEx,rru,rrv
use m3d, only: ip_fac
use getm_timers, only: tic, toc, TIM_SLOWTERMS

#ifndef NO_BAROCLINIC
use variables_3d, only: idpdx,idpdy

#endif
#ifdef STRUCTURE_FRICTION

use variables_3d, only: sf
#endif
$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k
REALTYPE :: vertsum
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8.13.12 stop macro - terminates the macro loop (Source File: stop macro.F90)

INTERFACE:

subroutine stop_macro

DESCRIPTION:

This routine should be called from m3d at the end of each macro time step in order to copy the
vertically interated and temporally averaged transports to old values Uinto and Vinto, and to
reinitialise the transports Uint and Vint to zero. USES:

use variables_2d, only: Uint,Uinto,Vint,Vinto
use getm_timers, only: tic, toc, TIM_STOPMCR
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:
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8.13.13 ss nn - calculates shear and buoyancy frequency (Source File: ss nn.F90)

INTERFACE:

subroutine ss_nn()

DESCRIPTION:

Here, the shear frequency squared, M2 = (∂zu)
2
+ (∂zv)

2
, and the buoyancy frequency squared,

N2 = ∂zb, with buoyancy b from (4) are calculated. For both calculations, two alternative methods
are coded. The two straight-forward methods which are explained first, do both have the disad-
vantage of generating numerical instabilities. The straight-forward way for calculating M2 is as
follows:

(M2)i,j,k ≈ 1

2

((

ui,j,k+1 − ui,j,k
1
2 (h

u
i,j,k+1 + hu

i,j,k)

)2

+
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1
2 (h

u
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1
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v
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(

vi,j−1,k+1 − vi,j−1,k
1
2 (h

v
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i,j−1,k)

)2)
(128)

Burchard (2002a) developed a new scheme, which guarantees that the mean kinetic energy which is
dissipated from the mean flow equals the shear production of turbulent kinetic energy. Therefore,
this scheme should be numerically more stable than (128):

(M2)i,j,k ≈ 1
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(129)

The straight-forward discretisation of N2 is given by

(N2)i,j,k ≈ bi,j,k+1 − bi,j,k
1
2 (h

t
i,j,k+1 + ht

i,j,k)
. (130)

In some cases, together with the straight-forward discretisation of the shear squared, (128), this
did not produce stable numerical results. The reason for this might be that the velocities involved
in the calculation for the shear squared do depend on the buoyancies in the two neighbouring
T-points such that the straight-forward method (130) leads to an inconsistency. However, other
experiments with the energy-conserving discretisation of the shear stress squared, (129) and the
straight-forward discretisation of N2, (130), produced numerically stable results.
Most stable results have been obtained with a weighted average for the N2 calculation:
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(N2)i,j,k ≈ 1
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(131)

These stability issues need to be further investigated in the future. USES:

use domain, only: imin,imax,jmin,jmax,kmax,au,av,az
use variables_3d, only: kmin,kumin,hn,uu,hun,kvmin,vv,hvn,SS,num
use parameters, only: g,rho_0

#ifndef NO_BAROCLINIC
use variables_3d, only: NN,buoy,T,S

#ifndef _OLD_BVF_
use variables_3d, only: alpha,beta

#endif
#endif

use getm_timers, only: tic, toc, TIM_SSNN
$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k,nb
REALTYPE :: dz,NNc,ttt
REALTYPE :: NNe,NNw,NNn,NNs
REALTYPE, parameter :: small_bvf = 1.d-10

#ifdef _SMOOTH_BVF_VERT_
REALTYPE :: below,center,above

#endif
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8.13.14 stresses 3d - bottom and surface stresses (Source File: stresses 3d.F90)

INTERFACE:

subroutine stresses_3d

DESCRIPTION:

As preparation of the call to do_turbulence in the routine gotm, see section 8.13.15, the normalised
surface and bottom stresses, τs/ρ0 (variable taus) and τb/ρ0 (variable taub), respectively, are
calculated and interpolated to the T-points. Input parameters to this routine are rru and tt rrv,
which contain r

√
u2 + v2 for the U- and V-points, respectively. The modules of the surface and

bottom stress vectors are calculated then by means of taking the square root of the sum of the
squares of the stess components. In a similar way also the x- and y-components of the bottom
stress are computed for output. USES:

use parameters, only: rho_0
use domain, only: az,au,av,imin,imax,jmin,jmax
use variables_3d, only: kumin,kvmin,uu,vv,hun,hvn,rru,rrv
use variables_3d, only: taus,taubx,tauby,taub
use meteo, only: tausx,tausy
use halo_zones, only : update_2d_halo,wait_halo,z_TAG
use getm_timers, only: tic, toc, TIM_STRESSES3D, TIM_STRESSES3DH

$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k,ku1,ku2,kv1,kv2
REALTYPE :: rho_0i
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8.13.15 gotm - a wrapper to call GOTM (Source File: gotm.F90)

INTERFACE:

subroutine gotm()

DESCRIPTION:

Here, the turbulence module of the General Ocean Turbulence Model (GOTM, see www.gotm.net
and Umlauf et al. (2005)) is called. First, all necessary parameters are transformed to suit with a
1D water column model, i.e., 3D fields are transformed to a vertical vector, 2D horizontal fields are
converted to a scalar. The transformed 3D fields are the layer heights hn → h, the shear squared SS
→ SS1d, the buoyancy frequency squared NN → NN1d, the turbulent kinetic energy tke → tke1d,
the dissipation rate eps → eps1d (from which the integral length scale L1d is calculated), the eddy
viscosity num → num1d, and the eddy diffusivity nuh → nuh1d. The scalars are the surface and
bottom friction velocities, u_taus and u_taub, respectively, the surface roughness parameter z0s
(which is currently hard-coded), and the bottom roughess parameter z0b. Then, the GOTM
turbulence module do_turbulence is called with all the transformed parameters discussed above.
Finally, the vertical vectors tke1d, eps1d, num1d and nuh1d are transformed back to 3D fields.
In case that the compiler option STRUCTURE_FRICTION is switched on, the additional turbulence
production by structures in the water column is calculated by calculating the total production as

Ptot = P + C
(
u2 + v2

)3/2
, (132)

with the shear production P , and the structure friction coefficient C. The latter is calculated in
the routine structure_friction_3d.F90.
There are furthermore a number of compiler options provided, e.g. for an older GOTM version,
for barotropic calcuations, and for simple parabolic viscosity profiles circumventing the GOTM
turbulence module. USES:

use halo_zones, only: update_3d_halo,wait_halo,H_TAG
use domain, only: imin,imax,jmin,jmax,kmax,az,min_depth,crit_depth
use variables_2d, only: D,zub,zvb,z
use variables_3d, only: dt,kmin,ho,hn,tke,eps,SS,num,taus,taub

#ifndef NO_BAROCLINIC
use variables_3d, only: NN,nuh

#endif
use variables_3d, only: avmback,avhback

#ifdef STRUCTURE_FRICTION
use variables_3d, only: uu,vv,hun,hvn,sf

#endif
use turbulence, only: do_turbulence,cde
use turbulence, only: tke1d => tke, eps1d => eps, L1d => L
use turbulence, only: num1d => num, nuh1d => nuh
use getm_timers, only: tic, toc, TIM_GOTM, TIM_GOTMTURB, TIM_GOTMH
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: i,j,k
REALTYPE :: u_taus,u_taub,z0s,z0b
REALTYPE :: h(0:kmax),dry,zz
REALTYPE :: NN1d(0:kmax),SS1d(0:kmax)
REALTYPE :: xP(0:kmax)
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8.13.16 tke eps advect 3d - 3D turbulence advection (Source File: tke eps advect 3d.F90)

INTERFACE:

subroutine tke_eps_advect_3d()

DESCRIPTION:

This routine carries out advection of the prognostic turbulence quantities tke (turbuent kinetic
energy, k) and eps (lenght scale related turbulence quantity, e.g. dissipation rate of k, ε, or turbulent
frequency, ω = ε/k. Here, the TVD advection schemes are used which are also used for the
momentum advection. USES:

use domain, only: imin,imax,jmin,jmax,kmax,az,ax
#if defined(SPHERICAL) || defined(CURVILINEAR)

use domain, only: dxv,dyu
#else

use domain, only: dx,dy
#endif

use m3d, only: turb_adv_split,turb_adv_hor,turb_adv_ver
use variables_3d, only: tke,eps,dt,uu,vv,ww,hun,hvn,ho,hn
use advection, only: J7
use advection_3d, only: do_advection_3d,W_TAG
use halo_zones, only: update_3d_halo,wait_halo,H_TAG
use turbulence, only: k_min,eps_min

$ use omp_lib
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

integer :: i,j,k
REALTYPE,dimension(I3DFIELD) :: uuadv,vvadv,wwadv,hoadv,hnadv,huadv,hvadv
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8.13.17 numerical mixing() (Source File: numerical mixing.F90)

INTERFACE:

subroutine numerical_mixing(F_2,F,nm3D,nm2d)

DESCRIPTION:

Here, the numerical tracer variance decay is calculated as proposed in Burchard and Rennau (2008).
USES:

use domain, only: imin,imax,jmin,jmax,kmax
use variables_3d, only: dt,hn
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: F_2(I3DFIELD)
REALTYPE, intent(in) :: F(I3DFIELD)

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: nm3d(I3DFIELD)
REALTYPE, intent(out) :: nm2d(I2DFIELD)

REVISION HISTORY:

Original author(s): Hannes Rennau

LOCAL VARIABLES:

integer :: i,j,k
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8.13.18 physical mixing() (Source File: physical mixing.F90)

INTERFACE:

subroutine physical_mixing(F,AH,diffusivity,pm3d,pm2d)

DESCRIPTION:

Here, the physical tracer variance decay for the tracer F , Dphys
(
〈F 〉2

)
, due to horizontal and

vertical mixing is calculated as proposed in Burchard and Rennau (2008):

Dphys
(
F 2
)
= 2Kh (∂xF )

2
+ 2Kh (∂yF )

2
+ 2Kv (∂zF )

2
. (133)

USES:

use domain, only: imin,imax,jmin,jmax,kmax,H,au,av
#if defined(SPHERICAL) || defined(CURVILINEAR)

use domain, only: dxu,dyv
#else

use domain, only: dx,dy
#endif

use variables_3d, only: dt,nuh,hn,ssen

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: F(I3DFIELD)
REALTYPE, intent(in) :: AH
REALTYPE, intent(in) :: diffusivity
!INPUT PARAMETERS
REALTYPE, intent(out) :: pm3d(I3DFIELD)
REALTYPE, intent(out) :: pm2d(I2DFIELD)

REVISION HISTORY:

Original author(s): Hannes Rennau

LOCAL VARIABLES:

REALTYPE :: dupper,dlower
integer :: i,j,k
REALTYPE :: aux(I3DFIELD)
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8.13.19 structure friction 3d - (Source File: structure friction 3d.F90)

INTERFACE:

subroutine structure_friction_3d()

DESCRIPTION:

Here, the quadratic friction term resulting from a structure in the water column is calculated. This
term will be added as additional forcing to the three-dimensional momentum equations, where it
is treated numerically implicitly. Therefore here, only the following terms is calculated:

sf = C(z)
√

u(z)2 + v(z)2, (134)

with the friction coefficient C bearing the physical unit [1/m]. USES:

use domain, only: imin,imax,jmin,jmax,kmax
use variables_3d, only: uu,vv,sf,huo,hvo
#define CALC_HALO_WW

#ifndef CALC_HALO_WW
use domain, only: az
use halo_zones, only: update_3d_halo,wait_halo,z_TAG

#endif
use getm_timers, only: tic, toc, TIM_STRCTFRICT
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

LOCAL VARIABLES:

REALTYPE :: dtm1
integer :: i,j,k

#ifdef STRUCTURE_FRICTION
REALTYPE :: cds(I2DFIELD)

#endif
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9 NetCDF I/O modules

The use of external files - both input and output - is done via generic wrapper routines in GETM.
For specific formats the I/O routines must be coded. In this section the specific NetCDF related
I/O routines are given.
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9.1 Fortran: Module Interface ncdf common - interfaces for NetCDF
IO subroutines (Source File: ncdf common.F90)

INTERFACE:

module ncdf_common

DESCRIPTION:

!USE: IMPLICIT NONE REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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9.2 Fortran: Module Interface Encapsulate grid related quantities (Source
File: grid ncdf.F90)

INTERFACE:

module grid_ncdf

DESCRIPTION:

This module is a container for grid related variables and parameters which are used jointly by
different parts of the netCDF storage system. USES:

IMPLICIT NONE

PUBLIC DATA MEMBERS:

integer :: xlen=-1,ylen=-1,zlen=-1
integer :: xc_dim=-1,yc_dim=-1
integer :: xx_dim=-1,yx_dim=-1

!DEFINED PARAMETERS
REALTYPE, parameter :: h_missing =-10.0
REALTYPE, parameter :: xy_missing =-999.0
REALTYPE, parameter :: latlon_missing =-999.0
REALTYPE, parameter :: conv_missing =-999.0

REVISION HISTORY:

Original author(s): Lars Umlauf
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9.3 Fortran: Module Interface Encapsulate 2D netCDF quantities (Source
File: ncdf 2d.F90)

INTERFACE:

module ncdf_2d

DESCRIPTION:

USES:

use output
IMPLICIT NONE

PUBLIC DATA MEMBERS:

integer :: ncid=-1

integer :: x_dim,y_dim
integer :: time_dim
integer :: time_id

integer :: elev_id,u_id,v_id
#if defined(CURVILINEAR)

integer :: urot_id,vrot_id
#endif

integer :: res_u_id=-1,res_v_id=-1
integer :: u10_id,v10_id
integer :: airp_id,t2_id,hum_id,tcc_id
integer :: tausx_id,tausy_id
integer :: zenith_angle_id
integer :: swr_id,albedo_id,shf_id
integer :: evap_id=-1,precip_id=-1
integer :: break_stat_id=-1

!DEFINED PARAMETERS
REALTYPE, parameter :: elev_missing =-9999.0
REALTYPE, parameter :: vel_missing =-9999.0
REALTYPE, parameter :: airp_missing =-9999.0
REALTYPE, parameter :: t2_missing =-9999.0
REALTYPE, parameter :: hum_missing =-9999.0
REALTYPE, parameter :: tcc_missing =-9999.0
REALTYPE, parameter :: stress_missing =-9999.0
REALTYPE, parameter :: angle_missing =-9999.0
REALTYPE, parameter :: swr_missing =-9999.0
REALTYPE, parameter :: albedo_missing =-9999.0
REALTYPE, parameter :: shf_missing =-9999.0
REALTYPE, parameter :: evap_missing =-9999.0
REALTYPE, parameter :: precip_missing =-9999.0

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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9.4 Fortran: Module Interface ncdf 2d bdy - input in NetCDF format
(Source File: ncdf 2d bdy.F90)

INTERFACE:

module ncdf_2d_bdy

DESCRIPTION:

USES:

use netcdf
use m2d, only: dtm,bdy_times,bdy_data,bdy_data_u,bdy_data_v
use time, only: string_to_julsecs,time_diff,add_secs
use time, only: julianday,secondsofday,juln,secsn
use time, only: write_time_string,timestr
use domain, only: need_2d_bdy_elev,need_2d_bdy_u,need_2d_bdy_v
IMPLICIT NONE
private
public :: init_2d_bdy_ncdf,do_2d_bdy_ncdf
!PRIVATE DATA MEMBERS:
integer :: ncid
integer :: time_id,elev_id=-1,nsets,bdy_len
integer :: u_id=-1, v_id=-1
integer :: start(2),edges(2)
REALTYPE :: offset

REAL_4B :: bdy_old(1500)
REAL_4B :: bdy_new(1500)
REAL_4B :: bdy_old_u(1500)
REAL_4B :: bdy_new_u(1500)
REAL_4B :: bdy_old_v(1500)
REAL_4B :: bdy_new_v(1500)

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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9.4.1 init 2d bdy ncdf -

INTERFACE:

subroutine init_2d_bdy_ncdf(fname)

DESCRIPTION:

kurt,kurt USES:

IMPLICIT NONE

INPUT PARAMETERS:

character(len=*), intent(in) :: fname

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See log for module

LOCAL VARIABLES:

integer :: err,rec_id,bdy_id
character(len=256) :: units
character(len=19) :: tbuf
integer :: j1,s1,j2,s2
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9.4.2 do 2d bdy ncdf -

INTERFACE:

subroutine do_2d_bdy_ncdf(loop)

DESCRIPTION:

kurt,kurt USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: loop

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer,save :: i,n
integer :: err
logical :: first=.true.
REALTYPE :: t
REALTYPE, save :: t1,t2= -_ONE_,loop0
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9.5 Fortran: Module Interface Encapsulate 3D netCDF quantities (Source
File: ncdf 3d.F90)

INTERFACE:

module ncdf_3d

DESCRIPTION:

USES:

use output
IMPLICIT NONE

PUBLIC DATA MEMBERS:

integer :: ncid=-1

integer :: x_dim,y_dim,z_dim
integer :: time_dim
integer :: time_id

integer :: hcc_id,h_id
integer :: elev_id,u_id,v_id
integer :: taubx_id,tauby_id
integer :: uu_id,vv_id,w_id

#ifdef _MOMENTUM_TERMS_
integer :: tdv_u_id
integer :: adv_u_id
integer :: vsd_u_id
integer :: hsd_u_id
integer :: cor_u_id
integer :: epg_u_id
integer :: ipg_u_id

integer :: tdv_v_id
integer :: adv_v_id
integer :: vsd_v_id
integer :: hsd_v_id
integer :: cor_v_id
integer :: epg_v_id
integer :: ipg_v_id

#endif
#if defined(CURVILINEAR)

integer :: uurot_id,vvrot_id
#endif

integer :: salt_id=-1
integer :: temp_id=-1
integer :: sigma_t_id=-1
integer :: rad_id=-1
integer :: tke_id,num_id,nuh_id,eps_id
integer :: SS_id,NN_id

#ifdef SPM
integer :: spmpool_id,spm_id

#endif
#ifdef GETM_BIO
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integer, allocatable :: bio_ids(:)
#endif
#ifdef _FABM_

integer, allocatable, dimension(:) :: fabm_ids,fabm_ids_diag,fabm_ids_ben,fabm_ids_diag_hz
#endif

integer :: nm3dS_id,nm3dT_id,nm2dS_id,nm2dT_id
integer :: pm3dS_id,pm3dT_id,pm2dS_id,pm2dT_id
integer :: nm3d_id,nm2d_id

!DEFINED PARAMETERS
REALTYPE, parameter :: hh_missing =-9999.0
REALTYPE, parameter :: elev_missing =-9999.0
REALTYPE, parameter :: vel_missing =-9999.0
REALTYPE, parameter :: tau_missing =-9999.0
REALTYPE, parameter :: salt_missing =-9999.0
REALTYPE, parameter :: temp_missing =-9999.0
REALTYPE, parameter :: rho_missing =-9999.0
REALTYPE, parameter :: rad_missing =-9999.0
REALTYPE, parameter :: tke_missing =-9999.0
REALTYPE, parameter :: nuh_missing =-9999.0
REALTYPE, parameter :: num_missing =-9999.0
REALTYPE, parameter :: eps_missing =-9999.0
REALTYPE, parameter :: SS_missing =-9999.0
REALTYPE, parameter :: NN_missing =-9999.0

#ifdef SPM
REALTYPE, parameter :: spmpool_missing=-9999.0
REALTYPE, parameter :: spm_missing =-9999.0

#endif
#if (defined(GETM_BIO) || defined(_FABM_))

REALTYPE, parameter :: bio_missing=-9999.0
#endif

REALTYPE, parameter :: nummix_missing=-9999.0

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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9.6 Fortran: Module Interface ncdf 3d bdy - input in NetCDF format
(Source File: ncdf 3d bdy.F90)

INTERFACE:

module ncdf_3d_bdy

DESCRIPTION:

USES:

use netcdf
use domain, only: imin,imax,jmin,jmax,kmax,ioff,joff
use domain, only: nsbv,NWB,NNB,NEB,NSB,bdy_index
use domain, only: wi,wfj,wlj,nj,nfi,nli,ei,efj,elj,sj,sfi,sli
use domain, only: H
use m2d, only: dtm
use variables_3d, only: hn
use bdy_3d, only: T_bdy,S_bdy
use time, only: string_to_julsecs,time_diff,add_secs
use time, only: julianday,secondsofday,juln,secsn
use time, only: write_time_string,timestr
IMPLICIT NONE
private
public :: init_3d_bdy_ncdf,do_3d_bdy_ncdf
!PRIVATE DATA MEMBERS:
integer :: ncid
integer :: time_id,temp_id,salt_id
integer :: start(4),edges(4)
integer :: zax_dim,zax_len,zax_pos
integer :: time_dim,time_len,time_pos
logical :: climatology=.false.
logical :: from_3d_fields
REALTYPE :: offset
REAL_4B, allocatable :: bdy_times(:),wrk(:)
REAL_4B, allocatable, dimension(:) :: zlev
REALTYPE, allocatable, dimension(:,:) :: T_old, T_new
REAL_4B, allocatable, dimension(:,:) :: T_wrk
REALTYPE, allocatable, dimension(:,:) :: S_old, S_new
REAL_4B, allocatable, dimension(:,:) :: S_wrk
REALTYPE, allocatable, dimension(:,:,:) :: T_bdy_clim,S_bdy_clim

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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9.6.1 init 3d bdy ncdf - (Source File: ncdf 3d bdy.F90)

INTERFACE:

subroutine init_3d_bdy_ncdf(fname)

DESCRIPTION:

kurt,kurt USES:

IMPLICIT NONE

INPUT PARAMETERS:

character(len=*), intent(in) :: fname

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See log for module

LOCAL VARIABLES:

character(len=256) :: units
character(len=19) :: tbuf
integer :: j1,s1,j2,s2
integer :: ndims, nvardims
integer :: vardim_ids(4)
integer, allocatable, dimension(:):: dim_ids,dim_len
character(len=16), allocatable :: dim_name(:)
integer :: rc,err
integer :: i,j,k,l,m,n,id
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9.6.2 do 3d bdy ncdf - (Source File: ncdf 3d bdy.F90)

INTERFACE:

subroutine do_3d_bdy_ncdf(loop)

DESCRIPTION:

kurt,kurt USES:

use time, only: day,month,secondsofday,days_in_mon,leapyear,secsprday
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: loop

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: err
REALTYPE :: rat
integer :: monthsecs,prev,this,next
logical, save :: first=.true.
integer, save :: loop0
REALTYPE :: t
REALTYPE, save :: t1=_ZERO_,t2=-_ONE_
integer :: i,j,k,l,n
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9.7 Fortran: Module Interface ncdf meteo - (Source File: ncdf meteo.F90)

INTERFACE:

module ncdf_meteo

DESCRIPTION:

USES:

use netcdf
use time, only: string_to_julsecs,time_diff,add_secs,in_interval
use time, only: jul0,secs0,julianday,secondsofday,timestep,simtime
use time, only: write_time_string,timestr
use domain, only: imin,imax,jmin,jmax,az,lonc,latc,convc
use grid_interpol, only: init_grid_interpol,do_grid_interpol
use grid_interpol, only: to_rotated_lat_lon
use meteo, only: meteo_file,on_grid,calc_met,met_method,hum_method
use meteo, only: RELATIVE_HUM,WET_BULB,DEW_POINT,SPECIFIC_HUM
use meteo, only: airp,u10,v10,t2,hum,tcc
use meteo, only: fwf_method,evap,precip
use meteo, only: tausx,tausy,swr,shf
use meteo, only: new_meteo,t_1,t_2
use meteo, only: evap_factor,precip_factor
use exceptions
IMPLICIT NONE
private

PUBLIC MEMBER FUNCTIONS:

public init_meteo_input_ncdf,get_meteo_data_ncdf
!PRIVATE DATA MEMBERS:
REALTYPE :: offset
integer :: ncid,ndims,dims(3)
integer :: start(3),edges(3)
integer :: u10_id,v10_id,airp_id,t2_id
integer :: hum_id,convp_id,largep_id,tcc_id
integer :: evap_id=-1,precip_id=-1
integer :: tausx_id,tausy_id,swr_id,shf_id
integer :: iextr,jextr,textr,tmax=-1
integer :: grid_scan=1
logical :: point_source=.false.
logical :: rotated_meteo_grid=.false.

REALTYPE, allocatable :: met_lon(:),met_lat(:)
REALTYPE, allocatable :: met_times(:)
REAL_4B, allocatable :: wrk(:,:)
REALTYPE, allocatable :: wrk_dp(:,:)

For gridinterpolation
REALTYPE, allocatable :: beta(:,:)
REALTYPE, allocatable :: ti(:,:),ui(:,:)
integer, allocatable :: gridmap(:,:,:)
REALTYPE, parameter :: pi=3.1415926535897932384626433832795029
REALTYPE, parameter :: deg2rad=pi/180.,rad2deg=180./pi
REALTYPE :: southpole(3) = (/0.0,-90.0,0.0/)
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character(len=10) :: name_lon="lon"
character(len=10) :: name_lat="lat"
character(len=10) :: name_time="time"
character(len=10) :: name_u10="u10"
character(len=10) :: name_v10="v10"
character(len=10) :: name_airp="slp"
character(len=10) :: name_t2="t2"
character(len=10) :: name_hum1="sh"
character(len=10) :: name_hum2="rh"
character(len=10) :: name_hum3="dev2"
character(len=10) :: name_hum4="twet"
character(len=10) :: name_tcc="tcc"
character(len=10) :: name_evap="evap"
character(len=10) :: name_precip="precip"

character(len=10) :: name_tausx="tausx"
character(len=10) :: name_tausy="tausy"
character(len=10) :: name_swr="swr"
character(len=10) :: name_shf="shf"
character(len=128) :: model_time

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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9.7.1 init meteo input ncdf -

INTERFACE:

subroutine init_meteo_input_ncdf(fn,nstart)
IMPLICIT NONE

DESCRIPTION:

Prepares reading meteorological forcing from a NetCDF formatted file. Based on names of various
variables the corresponding variable ids are obtained from the NetCDF file. The dimensions of the
meteological grid is read (x,y,t). If the southpole is not (0,-90,0) a rotated grid is assumed and
coefficients for interpolation between the meteorological grid and the model grid are calculated.
The arry met times are filled with the times where forcing is available. Finally, meteorological
fields are initialised by a call to get meteo data ncdf. INPUT PARAMETERS:

character(len=*), intent(in) :: fn
integer, intent(in) :: nstart

REVISION HISTORY:

See module for log.

LOCAL VARIABLES:

integer :: i,j,n
integer :: err
logical :: ok=.true.
REALTYPE :: olon,olat,rlon,rlat,x
character(len=10) :: name_thisvar
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9.7.2 get meteo data ncdf - .

INTERFACE:

subroutine get_meteo_data_ncdf(loop)
IMPLICIT NONE

DESCRIPTION:

Do book keeping about when new fields are to be read. Set variables used by do meteo and finally
calls read data if necessary. INPUT PARAMETERS:

integer, intent(in) :: loop

REVISION HISTORY:

See module for log.

LOCAL VARIABLES:

integer :: i,indx
REALTYPE :: t
logical, save :: first=.true.
integer, save :: save_n=1
integer :: j,s
character(len=19) :: met_str
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9.7.3 open meteo file - .

INTERFACE:

subroutine open_meteo_file(meteo_file)
IMPLICIT NONE

DESCRIPTION:

Instead of specifying the name of the meteorological file directly - a list of names can be specified
in meteo file. The rationale for this approach is that output from operational meteorological
models are of typically 2-5 days length. Collecting a number of these files allows for longer model
integrations without have to reformat the data. It is assumed that the different files contains the
same variables and that they are of the same shape. INPUT PARAMETERS:

character(len=*), intent(in) :: meteo_file

REVISION HISTORY:

See module for log.

LOCAL VARIABLES:

integer, parameter :: iunit=55
character(len=256) :: fn,time_units
integer :: junit,sunit,j1,s1,j2,s2
integer :: n,err,idum
logical :: first=.true.
logical :: found=.false.,first_open=.true.
integer, save :: lon_id=-1,lat_id=-1,time_id=-1,id=-1
integer, save :: time_var_id=-1
character(len=256) :: dimname
logical :: have_southpole
character(len=19) :: str1,str2
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9.7.4 read data -

INTERFACE:

subroutine read_data()
IMPLICIT NONE

DESCRIPTION:

Reads the relevant variables from the NetCDF file. Interpolates to the model grid if necessary.
After a call to this routine updated versions of either variables used for calculating stresses and
fluxes or directly the stresses/fluxes directly are available to do meteo. REVISION HISTORY:

See module for log.

LOCAL VARIABLES:

integer :: i1,i2,istr,j1,j2,jstr
integer :: i,j,err
REALTYPE :: angle,uu,vv,sinconv,cosconv
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9.7.5 copy var -

INTERFACE:

subroutine copy_var(grid_scan,var)
subroutine copy_var(grid_scan,inf,outf)
IMPLICIT NONE

DESCRIPTION:

Reads the relevant variables from the NetCDF file. Interpolates to the model grid if necessary. After
a call to this routine updated versions of either variables used for calculating stresses and fluxes or
directly the stresses/fluxes directly are available to do meteo. INPUT PARAMETERS:

integer, intent(in) :: grid_scan
REAL_4B, intent(in) :: inf(:,:)

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: outf(:,:)

REVISION HISTORY:

See module for log.

LOCAL VARIABLES:

integer :: i1,i2,istr,j1,j2,jstr
integer :: i,j,err
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9.8 Fortran: Module Interface ncdf river - (Source File: ncdf rivers.F90)

INTERFACE:

module ncdf_river

DESCRIPTION:

USES:

use netcdf
use time, only: string_to_julsecs,time_diff,add_secs
use time, only: julianday,secondsofday,juln,secsn,timestep
use time, only: write_time_string,timestr
use rivers, only: nriver,river_data,river_name,river_flow,river_factor
use rivers, only: ok,rriver,real_river_name,river_split
use rivers, only: temp_missing,salt_missing
use rivers, only: use_river_temp,use_river_salt,river_temp,river_salt

#ifdef GETM_BIO
use bio, only: bio_calc
use bio_var, only: numc,var_names
use rivers, only: river_bio

#endif
#ifdef _FABM_

use getm_fabm, only: model,fabm_calc
use rivers, only: river_fabm

#endif
IMPLICIT NONE
private

PUBLIC MEMBER FUNCTIONS:

public init_river_input_ncdf,get_river_data_ncdf
!PRIVATE DATA MEMBERS:
REALTYPE :: offset
integer :: ncid,ndims,dims(2),unlimdimid,textr
integer :: start(1),edges(1)
integer :: timedim,time_id
integer, allocatable :: r_ids(:)
integer, allocatable :: salt_id(:)
integer, allocatable :: temp_id(:)
integer, allocatable :: r_salt(:)
integer, allocatable :: r_temp(:)
REAL_4B, allocatable :: river_times(:)

#ifdef GETM_BIO
integer, allocatable :: bio_id(:,:)

#endif
#ifdef _FABM_

integer, allocatable :: fabm_id(:,:)
#endif

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
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9.8.1 init river input ncdf -

INTERFACE:

subroutine init_river_input_ncdf(fn,nstart)
IMPLICIT NONE

DESCRIPTION:

INPUT PARAMETERS:

character(len=*), intent(in) :: fn
integer, intent(in) :: nstart

REVISION HISTORY:

See module for log.

LOCAL VARIABLES:

integer :: i,j,m,n
integer :: err
character(len=19) :: tbuf
integer :: j1,s1,j2,s2
character(len=256) :: time_units
character(len=256) :: bio_name

#ifdef _FABM_
character(len=256) :: fabm_name

#endif
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9.8.2 get river data ncdf - .

INTERFACE:

subroutine get_river_data_ncdf(loop)
IMPLICIT NONE

DESCRIPTION:

INPUT PARAMETERS:

integer, intent(in) :: loop

REVISION HISTORY:

See module for log.

LOCAL VARIABLES:

integer :: i,j,n,nn,ni,m,indx,err
REALTYPE :: t
REAL_4B :: x(1)
logical, save :: first=.true.
integer, save :: save_n=1,last_indx=-1
REALTYPE, save :: t_1,t_2,loop0
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9.9 Fortran: Module Interface Encapsulate netCDF restart quantities
(Source File: ncdf restart.F90)

INTERFACE:

module ncdf_restart

DESCRIPTION:

This module and the related * restart ncdf() subroutines provide a drop-in replacement for the
binary file hotstart facility in GETM. The main reason for using NetCDF formatted hotstart files
instead of binary format is the abillity to use standard tools (nco, ncmerge) is a much easier way
to to introduce a new subdomain decomposition for an already running set-up - without having to
start all over again. See read restart ncdf() for further explanation.
This modules just contains variables shared accros the * restart ncdf() routines. USES:

use output
IMPLICIT NONE

PUBLIC DATA MEMBERS:

integer :: ncid=-1
integer :: xdim_id=-1
integer :: ydim_id=-1
integer :: zdim_id=-1
integer :: xax_id
integer :: yax_id
integer :: zax_id
integer :: loop_id
integer :: julianday_id
integer :: secondsofday_id
integer :: timestep_id
integer :: z_id,zo_id
integer :: U_id
integer :: SlUx_id,Slru_id
integer :: V_id
integer :: SlVx_id,Slrv_id

#ifndef NO_3D
integer :: ssen_id,ssun_id,ssvn_id
integer :: sseo_id,ssuo_id,ssvo_id
integer :: Uinto_id,Vinto_id
integer :: uu_id,vv_id,ww_id
integer :: uuEx_id,vvEx_id
integer :: tke_id,eps_id
integer :: num_id,nuh_id
integer :: hn_id

#ifndef NO_BAROCLINIC
integer :: T_id,S_id

#endif
#ifdef SPM

integer :: spm_id,spmpool_id
#endif
#ifdef GETM_BIO

integer :: biodim_id
integer :: bio_id

#endif
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#ifdef _FABM_
integer :: fabmpeldim_id
integer :: fabmbendim_id
integer :: fabm_pel_id
integer :: fabm_ben_id

#endif
#endif

integer :: xlen,ylen,zlen
integer :: status
integer :: start(5),edges(5)

REVISION HISTORY:

Original author(s): Karsten Bolding

210



9.10 Fortran: Module Interface Encapsulate netCDF mean quantities
(Source File: ncdf mean.F90)

INTERFACE:

module ncdf_mean

DESCRIPTION:

USES:

use output
IMPLICIT NONE

PUBLIC DATA MEMBERS:

integer :: ncid=-1

integer :: x_dim,y_dim,z_dim
integer :: time_dim
integer :: time_id

integer :: swrmean_id,ustarmean_id,ustar2mean_id
integer :: elevmean_id
integer :: uumean_id,vvmean_id,wmean_id
integer :: hmean_id
integer :: saltmean_id=-1
integer :: tempmean_id=-1
integer :: sigma_tmean_id=-1
integer :: nm3dS_id,nm3dT_id,nm2dS_id,nm2dT_id
integer :: pm3dS_id,pm3dT_id,pm2dS_id,pm2dT_id
integer :: nm3d_id,nm2d_id

#ifdef GETM_BIO
integer, allocatable :: biomean_id(:)

#endif
#ifdef _FABM_

integer, allocatable :: fabmmean_ids(:)
integer, allocatable :: fabmmean_ids_ben(:)
integer, allocatable :: fabmmean_ids_diag(:)
integer, allocatable :: fabmmean_ids_diag_hz(:)

#endif

REALTYPE, parameter :: elev_missing=-9999.0
REALTYPE, parameter :: hh_missing=-9999.0
REALTYPE, parameter :: swr_missing=-9999.0
REALTYPE, parameter :: vel_missing=-9999.0
REALTYPE, parameter :: salt_missing=-9999.0
REALTYPE, parameter :: temp_missing=-9999.0
REALTYPE, parameter :: rho_missing=-9999.0
REALTYPE, parameter :: tke_missing=-9999.0
REALTYPE, parameter :: eps_missing=-9999.0
REALTYPE, parameter :: nummix_missing=-9999.0

#if (defined(GETM_BIO) || defined(_FABM_))
REALTYPE, parameter :: bio_missing=-9999.0

#endif

Original author(s): Adolf Stips & Karsten Bolding

211



9.11 Fortran: Module Interface ncdf topo() - read bathymetry and grid
info (NetCDF) (Source File: ncdf topo.F90)

INTERFACE:

module ncdf_topo

DESCRIPTION:

This module reads the bathymetry and grid information required by the module domain. The file
format is NetCDF and data are read from the file specified as an paramater ncdf read topo file().
For a full description of the required variables see the documention for domain. The specific
readings are guided by grid type. USES:

use netcdf
use exceptions
use domain, only : have_lonlat,have_xy
use domain, only : iextr,jextr,ioff,joff
use domain, only : imin,imax,jmin,jmax
use domain, only : il,ih,jl,jh
use domain, only : ilg,ihg,jlg,jhg
use domain, only : ill,ihl,jll,jhl
use domain, only : H, Hland
use domain, only : grid_type
use domain, only : xcord,ycord
use domain, only : xxcord,yxcord
use domain, only : dx,dy
use domain, only : xc,yc
use domain, only : xx,yx
use domain, only : dlon,dlat
use domain, only : latc,lonc
use domain, only : latx,lonx
use domain, only : convx,convc
use domain, only : z0_method,z0
IMPLICIT NONE

PUBLIC MEMBER FUNCTIONS:

public ncdf_read_topo_file

DEFINED PARAMETERS:

REALTYPE, parameter :: missing_double =-999.
REALTYPE, parameter :: rearth_default = 6378815

REVISION HISTORY:

Original author(s): Lars Umlauf (adapted from an earlier version of
Karsten Bolding and Hans Burchard)

LOCAL VARIABLES:

private ncdf_read_2d
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9.11.1 ncdf read topo file() - read required variables

INTERFACE:

subroutine ncdf_read_topo_file(filename)

USES:

IMPLICIT NONE

DESCRIPTION:

This routine checks for and opens a NetCDF file with GETM bathymetry and grid information.
The first variable read and checked is grid type. Subsequent operations depends on the value of
grid type.
The following steps are done in ncdf read topo file():

1: check and open NetCDF file specified by ’filename’

2: read grid type

3: inquire bathymetry id

4: some test related to bathymetry id

5: set local and global index ranges for reading

6: read bathymetry into H

7: depending on grid type read axes and grid information - also check for optional variables

8: finally - check for and read spatially z0

INPUT PARAMETERS:

character(len=*), intent(in) :: filename

REVISION HISTORY:

Original author(s): Lars Umlauf

LOCAL VARIABLES:

integer :: ncid
integer :: status
integer :: ndims
integer :: dimlen
integer :: id
integer :: bathymetry_id
integer :: xaxis_id=-1
integer :: yaxis_id=-1
integer, dimension(2) :: dimidsT(2)
character*(NF90_MAX_NAME) :: xaxis_name,yaxis_name
integer :: i,j,n
integer :: iskipl,jskipl
integer, dimension(1) :: start
integer, dimension(1) :: count
logical :: have_dx=.true.,have_dy=.true.
logical :: have_dlon=.true.,have_dlat=.true.
logical :: have_lon=.false.
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logical :: have_lat=.false.
logical :: have_xc=.false.
logical :: have_yc=.false.
REALTYPE :: a(2)
integer :: rc
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9.11.2 coords and grid spacing

INTERFACE:

subroutine coords_and_grid_spacing(ncid,varid,iextr,cordname,x0,dx)

USES:

IMPLICIT NONE

DESCRIPTION:

Computes x and dx given that the netcdf file contains the axis (T-point) information. It is assumed
that the coordinate values are equidistantly spaced. The equidistance is tested and warnings given
if non-equidistant values are noted.
The routine also works for y, lon, and lat. INPUT PARAMETERS:

integer, intent(in) :: ncid
character(len=*), intent(in) :: spacing_name
character(len=*), intent(in) :: cord_name
integer, intent(in) ::
character(len=*), intent(in) :: cordname

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: x0, dx

REVISION HISTORY:

Original author(s): Bjarne Buchmann

LOCAL VARIABLES:

integer :: status
integer :: indx(1)
integer :: i
REALTYPE :: startval,endval
REALTYPE :: expectval,readval,dval
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9.11.3 ncdf read 2d() - generic reading routine

INTERFACE:

subroutine ncdf_read_2d(ncid,varid,field,il,ih,jl,jh)

USES:

IMPLICIT NONE

DESCRIPTION:

A two-dimensional netCDF variable with specified global range il < i < ih and jl < j < jh is
read into field. It is checked if the sizes of the fields correspond exactly. When calling this funtions,
remember that FORTRAN netCDF variables start with index 1. INPUT PARAMETERS:

integer, intent(in) :: ncid
integer, intent(in) :: varid
integer, intent(in) :: il,ih,jl,jh

OUTPUT PARAMETERS:

REALTYPE, intent(inout) :: field(:,:)

REVISION HISTORY:

Original author(s): Lars Umlauf

LOCAL VARIABLES:

integer :: status
integer, dimension(2) :: start
integer, dimension(2) :: count
integer, dimension(2) :: ubounds
character(len=20) :: varname
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9.12 Fortran: Module Interface ncdf get field() (Source File: ncdf get field.F90)

INTERFACE:

module ncdf_get_field

DESCRIPTION:

Provides 2 subroutines for reading 2D and 3D fields from NetCDF files. Vertical interpolation to
the model grid is done for 3D fields. USES:

use netcdf
use exceptions
IMPLICIT NONE

PUBLIC MEMBER FUNCTIONS:

public inquire_file_ncdf, get_2d_field_ncdf, get_3d_field_ncdf

REVISION HISTORY:

Original author(s): Karsten Bolding
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9.12.1 inquire file ncdf()

INTERFACE:

subroutine inquire_file_ncdf(fn,ncid,varids,varnames)

USES:

IMPLICIT NONE

DESCRIPTION:

INPUT PARAMETERS:

character(len=*), intent(in) :: fn
KB integer, intent(in) :: il,ih,jl,jh
KB logical, intent(in) :: break_on_missing

OUTPUT PARAMETERS:

integer, intent(inout) :: ncid
integer, allocatable, intent(inout) :: varids(:)
character(len=50), allocatable, intent(out) :: varnames(:)

REVISION HISTORY:

Original author(s): Karsten Bolding

LOCAL VARIABLES:

integer :: status,n
integer :: ndims,nvars
character(len=50) :: kurt
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9.12.2 get 2d field ncdf by name()

INTERFACE:

subroutine get_2d_field_ncdf_by_name(fn,varname,il,ih,jl,jh,break_on_missing,field)

USES:

IMPLICIT NONE

DESCRIPTION:

A two-dimensional netCDF variable with specified global range il < i < ih and jl < j < jh is
read into field. It is checked if the sizes of the fields correspond exactly. When calling this funtions,
remember that FORTRAN netCDF variables start with index 1. INPUT PARAMETERS:

character(len=*), intent(in) :: fn,varname
integer, intent(in) :: il,ih,jl,jh
logical, intent(in) :: break_on_missing

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: field(:,:)

REVISION HISTORY:

Original author(s): Karsten Bolding, Lars Umlauf

LOCAL VARIABLES:

integer, dimension(2) :: start
integer, dimension(2) :: edges
integer, dimension(2) :: ubounds
integer :: status,ncid,varid
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9.12.3 get 2d field ncdf()

INTERFACE:

subroutine get_2d_field_ncdf_by_id(ncid,varid,il,ih,jl,jh,break_on_missing,field)

USES:

IMPLICIT NONE

DESCRIPTION:

A two-dimensional netCDF variable with specified global range il < i < ih and jl < j < jh is
read into field. It is checked if the sizes of the fields correspond exactly. When calling this funtions,
remember that FORTRAN netCDF variables start with index 1. INPUT PARAMETERS:

integer, intent(in) :: ncid,varid
integer, intent(in) :: il,ih,jl,jh
logical, intent(in) :: break_on_missing

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: field(:,:)

REVISION HISTORY:

Original author(s): Karsten Bolding, Lars Umlauf

LOCAL VARIABLES:

integer, dimension(2) :: start
integer, dimension(2) :: edges
integer, dimension(2) :: ubounds
integer :: status
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9.12.4 get 3d field ncdf -

INTERFACE:

subroutine get_3d_field_ncdf(fname,var,nf,break_on_missing,f)

DESCRIPTION:

From a NetCDF files - fname - read the variable - var - into the field - f. USES:

use netcdf
use domain, only: imin,jmin,imax,jmax,kmax,iextr,jextr,ioff,joff
use domain, only: il_domain=>il,ih_domain=>ih,jl_domain=>jl,jh_domain=>jh
use domain, only: H,az

#ifndef NO_3D
use variables_3d, only: hn

#endif
IMPLICIT NONE

INPUT PARAMETERS:

character(len=*), intent(in) :: fname,var
integer, intent(in) :: nf
logical, intent(in) :: break_on_missing

INPUT/OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

REALTYPE, intent(inout) :: f(I3DFIELD)

REVISION HISTORY:

Original author(s): Karsten Bolding

LOCAL VARIABLES:

integer :: il,jl,iloc,jloc,indx
integer :: ih,jh,kh,nh
integer :: rc,err,ncid,var_id,i,j,k,n
integer :: start(4),edges(4)
integer :: ndims
integer :: xax_id=-1,yax_id=-1,zax_id=-1,time_id=-1
character(len=256) :: dimname
REAL_4B, allocatable :: zax(:), tax(:), wrk(:)
REALTYPE, allocatable :: zax_2d(:), wrk_2d(:,:,:)
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9.12.5 Sets various attributes for a NetCDF variable. (Source File: set attributes.F90)

INTERFACE:

subroutine set_attributes(ncid,id, &
units,long_name, &
netcdf_real, &
valid_min,valid_max,valid_range, &
scale_factor,add_offset, &
FillValue,missing_value, &
C_format,FORTRAN_format)

DESCRIPTION:

This routine is used to set a number of attributes for the various variables. The routine make
heavy use of the optional keyword. The list of recognized keywords is very easy expandable. We
have included a sub-set of the COARDS conventions. USES:

use netcdf
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: ncid,id
integer, optional :: netcdf_real
character(len=*), optional :: units,long_name

#if 1
REALTYPE, optional :: valid_min,valid_max,valid_range(2)
REALTYPE, optional :: scale_factor,add_offset
REALTYPE, optional :: FillValue,missing_value

#else
REAL_4B, optional :: valid_min,valid_max,valid_range(2)
REAL_4B, optional :: scale_factor,add_offset
REAL_4B, optional :: FillValue,missing_value

#endif
character(len=*), optional :: C_format,FORTRAN_format

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

LOCAL VARIABLES:

integer, parameter :: kind_real_single = SELECTED_REAL_KIND(p=5)
integer, parameter :: kind_real_double = SELECTED_REAL_KIND(p=14)
integer :: iret
integer :: ft

222



9.12.6 Initialse grid related variables

INTERFACE:

subroutine init_grid_ncdf(ncid,init3d,x_dim,y_dim,z_dim)

DESCRIPTION:

This routine creates netCDF variables in an already existing netCDF file in define mode with
netCDF file-id ”ncid”. All variables are related the numerical grid and the bathymetery. If the
logical flag ”init3d” evaluates false, no information about the vertical grid is initalised (e.g. if
results from a horizontally integrated run are stored). Output arguments are the dimension id’s
for the netCDF dimensions, which may be needed for creating other, not grid related, netCDF
variables. USES:

use exceptions
use netcdf
use ncdf_common, only: set_attributes
use grid_ncdf
use domain, only: imin,imax,jmin,jmax,kmax
use domain, only: grid_type,vert_cord
use domain, only: have_lonlat,have_xy
use output, only: save_metrics,save_masks
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: ncid
logical, intent(in) :: init3d

INPUT PARAMETERS:

integer, intent(out) :: x_dim
integer, intent(out) :: y_dim
integer, intent(out), optional :: z_dim

REVISION HISTORY:

Original author(s): Lars Umlauf

LOCAL VARIABLES:

integer :: status
integer :: id
integer :: axisdim(1)
integer :: f2_dims(2)
REALTYPE :: fv,mv,vr(2)
character(32) :: xname,yname,zname
character(32) :: xxname,yxname
character(32) :: xunits,yunits,zunits
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9.12.7 Save grid related variables

INTERFACE:

subroutine save_grid_ncdf(ncid,save3d)

DESCRIPTION:

This routine saves netCDF variables in an already existing netCDF file in save mode with netCDF
file-id ”ncid”. The variables saved correspond to those GETM variables not changing in time, i.e.
grid related variables and bathymetry. If the logical flag ”save3d” evaluates false, no information
about the vertical grid is saved (e.g. if results from a horizontally integrated run are stored). USES:

use exceptions
use netcdf
use grid_ncdf
use domain, only: imin,imax,jmin,jmax
use domain, only: grid_type,vert_cord
use domain, only: have_lonlat,have_xy
use domain, only: ioff,joff
use domain, only: dx,dy
use domain, only: dlon,dlat
use domain, only: xcord,ycord
use domain, only: xxcord,yxcord
use domain, only: xc,yc
use domain, only: xx,yx
use domain, only: latc,lonc,convc
use domain, only: latx,lonx,convx
use domain, only: latu,latv
use domain, only: dxc,dyc,dxu,dyu,dxv,dyv,dxx,dyx

KB use domain, only: rearth
use domain, only: H,ga
use domain, only: az,au,av
use output, only: save_metrics,save_masks

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: ncid
logical, intent(in) :: save3d

REVISION HISTORY:

Original author(s): Lars Umlauf

LOCAL VARIABLES:

integer :: i,j
integer :: status
integer :: start(2),edges(2)
integer :: id
character(32) :: zname
REALTYPE :: ws(E2DFIELD)
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9.12.8 Initialise 2D netCDf variables

INTERFACE:

subroutine init_2d_ncdf(fn,title,starttime)

DESCRIPTION:

USES:

use netcdf
use exceptions
use ncdf_common
use ncdf_2d
use domain, only: imin,imax,jmin,jmax
use domain, only: ioff,joff
use meteo, only: metforcing,calc_met
use meteo, only: fwf_method
use m2d, only: residual
use getm_version
IMPLICIT NONE

INPUT PARAMETERS:

character(len=*), intent(in) :: fn,title,starttime

DEFINED PARAMETERS:

logical, parameter :: init3d=.false.

REVISION HISTORY:

LOCAL VARIABLES:

integer :: err
integer :: scalar(1),f2_dims(2),f3_dims(3)
REALTYPE :: fv,mv,vr(2)
character(len=80) :: history,ts
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9.12.9 save 2d ncdf() - saves 2D-fields. (Source File: save 2d ncdf.F90)

INTERFACE:

subroutine save_2d_ncdf(secs)

DESCRIPTION:

USES:

use netcdf
use exceptions
use ncdf_2d
use grid_ncdf, only: xlen,ylen
use domain, only: ioff,joff,imin,imax,jmin,jmax
use domain, only: H,az,au,av,crit_depth
use domain, only: convc
use variables_2d, only: z,D,U,DU,V,DV,res_u,res_v

#ifdef USE_BREAKS
use variables_2d, only: break_stat

#endif
use meteo, only: metforcing,calc_met
use meteo, only: airp,u10,v10,t2,hum,tcc
use meteo, only: evap,precip
use meteo, only: tausx,tausy,zenith_angle,swr,albedo,shf

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: secs
!DEFINED PARAMTERS:
logical, parameter :: save3d=.false.

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: err
integer :: start(3),edges(3)
integer, save :: n2d=0
REALTYPE :: dum(1)
integer :: i,j
REALTYPE :: Utmp(E2DFIELD),Vtmp(E2DFIELD)

#if defined(CURVILINEAR)
REALTYPE :: Urot(E2DFIELD),Vrot(E2DFIELD)
REALTYPE :: deg2rad = 3.141592654/180.
REALTYPE :: cosconv,sinconv

#endif
REALTYPE,dimension(E2DFIELD) :: ws
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9.12.10 Initialise 3D netCDF variables

INTERFACE:

subroutine init_3d_ncdf(fn,title,starttime)

DESCRIPTION:

USES:

use netcdf
use exceptions
use ncdf_common
use ncdf_3d
use domain, only: ioff,joff
use domain, only: imin,imax,jmin,jmax,kmax
use domain, only: vert_cord
use m3d, only: calc_temp,calc_salt

#ifdef SPM
use suspended_matter, only: spm_save

#endif
#ifdef GETM_BIO

use bio_var, only: numc,var_names,var_units,var_long
#endif
#ifdef _FABM_

use getm_fabm, only: model,fabm_calc,output_none
#endif

use getm_version
IMPLICIT NONE

INPUT PARAMETERS:

character(len=*), intent(in) :: fn,title,starttime

DEFINED PARAMETERS:

logical, parameter :: init3d=.true.

REVISION HISTORY:

LOCAL VARIABLES:

integer :: err
integer :: n,rc
integer :: scalar(1),f3_dims(3),f4_dims(4)
REALTYPE :: fv,mv,vr(2)
character(len=80) :: history,ts
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9.12.11 Save 3D netCDF variables (Source File: save 3d ncdf.F90)

INTERFACE:

subroutine save_3d_ncdf(secs)

DESCRIPTION:

USES:

use netcdf
use exceptions
use ncdf_3d
use grid_ncdf, only: xlen,ylen,zlen
use domain, only: ioff,joff,imin,imax,jmin,jmax,kmax
use domain, only: H,HU,HV,az,au,av,min_depth
use domain, only: convc

#if defined CURVILINEAR || defined SPHERICAL
use domain, only: dxv,dyu,arcd1

#else
use domain, only: dx,dy,ard1

#endif
use variables_2d, only: z,D
use variables_3d, only: Uavg, Vavg, Dun, Dvn
use variables_3d, only: dt,kmin,ho,hn,uu,hun,vv,hvn,ww,hcc,SS
use variables_3d, only: taubx,tauby

#ifdef _MOMENTUM_TERMS_
use variables_3d, only: tdv_u,adv_u,vsd_u,hsd_u,cor_u,epg_u,ipg_u
use variables_3d, only: tdv_v,adv_v,vsd_v,hsd_v,cor_v,epg_v,ipg_v

#endif
#ifndef NO_BAROCLINIC

use variables_3d, only: S,T,rho,rad,NN
#endif

use variables_3d, only: nummix3d_S,nummix3d_T,phymix3d_S,phymix3d_T
use variables_3d, only: numdis3d
use variables_3d, only: tke,num,nuh,eps

#ifdef SPM
use variables_3d, only: spm_pool,spm

#endif
#ifdef SPM

use suspended_matter, only: spm_save
#endif
#ifdef GETM_BIO

use bio_var, only: numc
use variables_3d, only: cc3d

#endif
#ifdef _FABM_

use getm_fabm,only: model,fabm_pel,fabm_ben,fabm_diag,fabm_diag_hz
#endif

use parameters, only: g,rho_0
use m3d, only: calc_temp,calc_salt
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: secs

228



!DEFINED PARAMTERS:
logical, parameter :: save3d=.true.

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: err,n
integer :: start(4),edges(4)
integer, save :: n3d=0
REALTYPE :: DONE(E2DFIELD)
REALTYPE :: dum(1)
integer :: i,j
REALTYPE :: uutmp(I3DFIELD),vvtmp(I3DFIELD)

#if defined(CURVILINEAR)
REALTYPE :: uurot(I3DFIELD),vvrot(I3DFIELD)
REALTYPE :: deg2rad = 3.141592654/180.
REALTYPE :: cosconv,sinconv

#endif
REALTYPE,dimension(E2DFIELD) :: ws2d
REALTYPE,dimension(I3DFIELD) :: ws
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9.12.12 ncdf close() - closes the specified NetCDF file. (Source File: ncdf close.F90)

INTERFACE:

subroutine ncdf_close()

DESCRIPTION:

USES:

use netcdf
use ncdf_2d, only: nc2d => ncid

#ifndef NO_3D
use ncdf_3d, only: nc3d => ncid

#endif
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

integer :: err
REALTYPE :: dummy=-_ONE_
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9.12.13 Create a GETM NetCDFNetCDF hotstart file (Source File: create restart ncdf.F90)

INTERFACE:

subroutine create_restart_ncdf(fname,loop,runtype)

DESCRIPTION:

Creates a new NetCDF formatted file for storing variables necessary to make a correct GETM
hotstart. The created file contains dimensions (xax, yax, zax) as well as the (empty) variables.
Variables are named corresponding to the names used in the Fortran files. Only the actual domain
is stored (i.e. not the halo-zones). This allows easy use of ’ncmerge’ to stitch a number of hotstart
files together to cover the entire computational domain. See read restart ncdf() for use. USES:

use netcdf
use ncdf_restart
use getm_version
use getm_config
use domain, only: ioff,joff
use domain, only: imin,imax,jmin,jmax,kmax
use domain, only: vert_cord

#ifdef GETM_BIO
use bio, only: bio_calc
use bio_var, only: numc

#endif
#ifdef _FABM_

use getm_fabm, only: fabm_calc,model
#endif

IMPLICIT NONE

INPUT PARAMETERS:

character(len=*), intent(in) :: fname
integer, intent(in) :: loop
integer, intent(in) :: runtype

REVISION HISTORY:

Original author(s): Karsten Bolding

LOCAL VARIABLES:

character(len=80) :: history,tts
character(len=80) :: str_error
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9.12.14 Writes variables to a GETM NetCDF hotstart file (Source File: write restart ncdf.F90)

INTERFACE:

subroutine write_restart_ncdf(runtype,secs,loop,julianday,secondsofday)

DESCRIPTION:

Writes to a NetCDF file previously created using the create restart ncdf() subroutine all variables
necessary to make a correct GETM hotstart. The Fortran variables are written directly into the
corresponding NetCDF variable. USES:

use netcdf
use ncdf_restart
use domain, only: xcord,ycord
use domain, only: imin,imax,jmin,jmax,kmax
use variables_2d

#ifndef NO_3D
use variables_3d

#ifdef GETM_BIO
use bio, only: bio_calc
use bio_var, only: numc

#endif
#ifdef _FABM_

use getm_fabm, only: fabm_pel,fabm_ben
#endif
#endif
#ifdef SPM

use suspended_matter
#endif

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: runtype
REALTYPE, intent(in) :: secs ! not used now
integer, intent(in) :: loop,julianday,secondsofday

REVISION HISTORY:

Original author(s): Karsten Bolding

LOCAL VARIABLES:

integer :: k,n, rc
REALTYPE, allocatable :: zax(:)
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9.12.15 Initialise restart netCDf variables

INTERFACE:

subroutine open_restart_ncdf(fname,runtype)

DESCRIPTION:

Opens a NetCDF formatted GETM hotstart file. All NetCDF variable id’s necessary for making a
correct GETM hotstart are read. The id’s are shared with the reading routine using the ncdf restart
module. USES:

use netcdf
use ncdf_restart

#ifndef NO_3D
use domain, only: vert_cord

#ifdef GETM_BIO
use bio, only: bio_calc
use getm_bio, only: bio_init_method

#endif
#ifdef _FABM_

use getm_fabm, only: fabm_calc,fabm_init_method
#endif
#endif

IMPLICIT NONE

INPUT PARAMETERS:

character(len=*), intent(in) :: fname
integer, intent(in) :: runtype

REVISION HISTORY:

Original author(s): Karsten Bolding

LOCAL VARIABLES:

integer :: dimids(3)
character(len=20) :: varnam
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9.12.16 Read variables from a GETM NetCDF hotstart file (Source File: read restart ncdf.F90)

INTERFACE:

subroutine read_restart_ncdf(runtype,loop,julianday,secondsofday,tstep)

DESCRIPTION:

Reads from a NetCDF files (with handler ncid) opened with open restart ncdf(). All variable id’s
are initialised. The variables can be read from hotstart files with the same dimensions as given by
imin:imax,jmin:jmax - or - from a hotstart file with the same dimensions as topo.nc (and on the
same grid). This allows to use ’ncmerge’ to combine a number of hotstart files in to one - make a
new sub-domain decomposition and use the newly created hotstart file. It might be necessary to
use ’ncks’ to cut the file to be have the same dimensions as topo.nc. Allowing for the file naming
scheme in GETM links for each sub-domain should be made - e.g. ln -s restart.in restart.000.in; ln
-s restart.in restart.001.in etc.
Halo-zones are updated using calls to update 2d halo() and update 3d halo(). USES:

use netcdf
use ncdf_restart
use domain, only: iextr,jextr,ioff,joff
use domain, only: az,au,av
use halo_zones, only: update_2d_halo,update_3d_halo,wait_halo
use halo_zones, only: H_TAG,U_TAG,V_TAG
use variables_2d
use exceptions, only: getm_error

#ifndef NO_3D
use variables_3d

#ifdef GETM_BIO
use bio, only: bio_calc
use bio_var, only: numc
use getm_bio, only: bio_init_method

#endif
#ifdef _FABM_

use getm_fabm, only: fabm_init_method
use getm_fabm, only: fabm_pel,fabm_ben

#endif
#endif
#ifdef SPM

use suspended_matter
#endif

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: runtype

OUTPUT PARAMETERS:

integer, intent(out) :: loop,julianday,secondsofday
REALTYPE, intent(out) :: tstep
!DEFINED PARAMTERS:

REVISION HISTORY:

Original author(s): Karsten Bolding

LOCAL VARIABLES:
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integer :: il,ih,iloc,ilen,i,istart,istop
integer :: jl,jh,jloc,jlen,j,jstart,jstop
integer :: n
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9.12.17 Initialise mean netCDf variables

INTERFACE:

subroutine init_mean_ncdf(fn,title,starttime)

DESCRIPTION:

USES:

use netcdf
use exceptions
use ncdf_common
use ncdf_mean
use domain, only: ioff,joff
use domain, only: imin,imax,jmin,jmax,kmax
use domain, only: vert_cord
use m3d, only: calc_temp,calc_salt

#ifdef GETM_BIO
use bio_var, only: numc,var_names,var_units,var_long

#endif
#ifdef _FABM_

use getm_fabm, only: model,fabm_pel,output_none
#endif

use getm_version
IMPLICIT NONE

INPUT PARAMETERS:

character(len=*), intent(in) :: fn,title,starttime

DEFINED PARAMETERS:

logical, parameter :: init3d=.true.

REVISION HISTORY:

Original author(s): Adolf Stips & Karsten Bolding
Revision 1.1 2004/03/29 15:38:10 kbk
possible to store calculated mean fields

LOCAL VARIABLES:

integer :: n
integer :: err
integer :: scalar(1),f3_dims(3),f4_dims(4)
REALTYPE :: fv,mv,vr(2)
character(len=80) :: history,tts
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9.12.18 Initialise mean netCDF variables (Source File: save mean ncdf.F90)

INTERFACE:

subroutine save_mean_ncdf(secs)

DESCRIPTION:

USES:

use netcdf
use exceptions
use grid_ncdf, only: xlen,ylen,zlen
use ncdf_mean
use diagnostic_variables
use domain, only: ioff,joff,imin,imax,jmin,jmax,kmax
use domain, only: H,az
use domain, only: min_depth
use variables_3d, only: kmin
use variables_3d, only: Dn
use m3d, only: calc_temp,calc_salt

#ifdef GETM_BIO
use bio_var, only: numc

#endif
#ifdef _FABM_

use getm_fabm, only: model
#endif

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: secs
!DEFINED PARAMTERS:
logical, parameter :: save3d=.true.

REVISION HISTORY:

Original author(s): Adolf Stips & Karsten Bolding

LOCAL VARIABLES:

integer :: n
integer :: err
integer :: start(4),edges(4)
integer, save :: n3d=0
REALTYPE :: dum(1)
REALTYPE,dimension(E2DFIELD) :: ws2d
REALTYPE,dimension(I3DFIELD) :: ws3d
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